首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   3篇
化学工业   13篇
金属工艺   1篇
能源动力   1篇
轻工业   1篇
无线电   1篇
一般工业技术   10篇
冶金工业   2篇
自动化技术   7篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2016年   2篇
  2015年   2篇
  2014年   6篇
  2013年   5篇
  2012年   2篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有36条查询结果,搜索用时 32 毫秒
1.
Osteonecrosis of the jaws (ONJ) usually has a clear etiology. Local infection or trauma, radiotherapy and drugs that disrupt the vascular supply or bone turnover in the jaws are its major contributors. The thrombotic occlusion of the bone’s venous outflow that occurs in individuals with hereditary thrombophilia and/or hypofibrinolysis has a less known impact on jaw health and healing capability. Our research provides the most comprehensive, up-to-date and systematized information on the prevalence and significance of hereditary thrombophilia and/or hypofibrinolysis states in ONJ. We found that hereditary prothrombotic abnormalities are common in patients with ONJ refractory to conventional medical and dental treatments. Thrombophilia traits usually coexist with hypofibrinolysis traits. We also found that frequently acquired prothrombotic abnormalities coexist with hereditary ones and enhance their negative effect on the bone. Therefore, we recommend a personalized therapeutic approach that addresses, in particular, the modifiable risk factors of ONJ. Patients will have clear benefits, as they will be relieved of persistent pain and repeated dental procedures.  相似文献   
2.
Glioblastoma (GBM) is one of the most aggressive tumors of the central nervous system, characterized by a wide range of inter- and intratumor heterogeneity. Accumulation of fatty acids (FA) metabolites was associated with a low survival rate in high-grade glioma patients. The diversity of brain lipids, especially polyunsaturated fatty acids (PUFAs), is greater than in all other organs and several classes of proteins, such as FA transport proteins (FATPs), and FA translocases are considered principal candidates for PUFAs transport through BBB and delivery of PUFAs to brain cells. Among these, the CD36 FA translocase promotes long-chain FA uptake as well as oxidated lipoproteins. Moreover, CD36 binds and recognizes thrombospondin-1 (TSP-1), an extracellular matrix protein that was shown to play a multifaceted role in cancer as part of the tumor microenvironment. Effects on tumor cells are mediated by TSP-1 through the interaction with CD36 as well as CD47, a member of the immunoglobulin superfamily. TSP-1/CD47 interactions have an important role in the modulation of glioma cell invasion and angiogenesis in GBM. Separately, FA, the two membrane receptors CD36, CD47, and their joint ligand TSP-1 all play a part in GBM pathogenesis. The last research has put in light their interconnection/interrelationship in order to exert a cumulative effect in the modulation of the GBM molecular network.  相似文献   
3.
The ability to have control of fabricated structures on the nanometer size scale is essential in interfacing inorganic technologies with biological systems in many scientific areas including biomimetics and cell topology studies. Here, we developed a simple and efficient method to produce polydimethylsiloxane (PDMS) nanofibers with controlled aspect ratios that could be used in biological studies. As PDMS is a well studied polymer system, this structure would enable a variety of diverse applications. A template synthesis technique was used to create the fibers by molding a polymer solution into an alumina membrane. The pressure and the template surface chemical characteristics were controlled to enable the easy creation of geometric configurations with up to a 30‐fold range of aspects ratios through the use of the same porous alumina template. These fibers can be also used in producing biomimetic synthetic column structures that are found in biological systems such as spider hairs and gecko feet. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   
4.
The corrosion behavior of a new, advanced Ti-20Zr alloy with α+β microstructure (determined by optical microscopy, XRD, and SEM) and very good mechanical properties (obtained from the stress-strain curve) is studied in this paper. The composition of the alloy native passive film was determined from a XPS analysis and the long-term corrosion resistance in undoped and doped states with 0.05M NaF artificial Carter-Brugirard saliva of different pH values, simulating the severe functional conditions of a dental implant, was analyzed by electrochemical methods. This alloy possesses an advantageous balance between good mechanical resistance and plasticity and Young’s modulus and exhibits more favorable electrochemical parameters and corrosion resistance than CP Ti due to its more resistant passive layer containing Ti2O3, TiO2, and ZrO2 protective oxides. After 1000 h of immersion in saliva, the protective properties of the alloy were enhanced due to the deposited surface layer that incorporated protective phosphates (shown by SEM and XPS).  相似文献   
5.
The physico-chemical properties of three grafted pullulans (P) having linked poly(3-acrylamidopropyl)trimethylammonium chloride (pAPTAC) as side chains (P-g-pAPTAC1, P-g-pAPTAC2 and P-g-pAPTAC3 with 22.53, 29.05, and 34.51 (wt.%) of pAPTAC content in polymer, respectively) and possessing polyelectrolyte character were determined by light scattering analysis. All grafted pullulan aqueous solutions were tested in the presence of 0.5 M NaCl, KCl, NaNO3 or KNO3. The biggest associations were recorded in 0.5 M NaCl aqueous solutions for P-g-pAPTAC1, P-g-pAPTAC2 and P-g-pAPTAC3 according to the maximum values for Rg extracted from MALLS (multiangle laser light scattering) measurements. Also, the dominant conformation in salted solution of these polyelectrolytes was random coil as Debye plot analysis revealed. Antibacterial activity was tested by Kirby–Bauer diffusion method and all grafted pullulans dissolved in aqueous solutions of 0.5 M NaCl have developed inhibition zone against Staphylococcus aureus (ATCC 25923).  相似文献   
6.
7.
Functional perovskite materials gain increasing significance due to their wide spectrum of attractive properties, including ferroelectric, ferromagnetic, conducting and multiferroic properties. Due to the developments of recent years, materials of this type can conveniently be grown, mainly by pulsed laser deposition, in the form of epitaxial films, multilayers, superlattices, and well‐ordered arrays of nanoislands. These structures allow for investigations of preparation–microstructure–property relations. A wide variation of the properties is possible, determined by strain, composition, defect contents, dimensional effects, and crystallographic orientation. An overview of our corresponding work of recent years is given, particularly focusing on epitaxial films, superlattices and nanoisland arrays of (anti)ferroelectric and multiferroic functional perovskites.  相似文献   
8.
9.
This article analyses the microstructure, electrochemical behavior, and biocompatibility of a novel Ti-20Nb-10Zr-5Ta alloy with low Young’s modulus (59 GPa) much closer to that of bone, between 10 and 30 GPa, than Ti and other Ti alloys used as implant biomaterial. XRD and SEM measurements revealed a near β crystalline microstructure containing β phase matrix and secondary α phase, with a typical grain size of around 200 μm. The corrosion behavior in neutral Ringer solution evidenced: self-passivation behavior characterizing a very resistant passive film; an easy passivation as a result of favorable influence of the alloying elements Nb, Zr, and Ta that participate with their passive oxides to the formation of the alloy passive film; low corrosion and ion release rates corresponding with very low toxicity. In MEM solution, the novel alloy demonstrated very high corrosion resistance and no susceptibility to localized corrosion. Biocompatibility was evaluated on in vitro human osteoblast-like and human immortalized pulmonary fibroblast cell (Wi-38) lines and the new Ti-20Nb-10Zr-5Ta alloy exhibited no cytotoxicity. The new Ti-20Nb-10Zr5Ta alloy is a promising material for implants due to combined properties of low elastic modulus, very low corrosion rate, and good biocompatibility.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号