首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   2篇
化学工业   6篇
机械仪表   1篇
无线电   9篇
冶金工业   2篇
自动化技术   8篇
  2021年   3篇
  2020年   1篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1998年   2篇
  1997年   1篇
  1988年   2篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
Over the past few years, a large and ever increasing number of Web sites have incorporated one or more social login platforms and have encouraged users to log in with their Facebook, Twitter, Google, or other social networking identities. Research results suggest that more than two million Web sites have already adopted Facebook’s social login platform, and the number is increasing sharply. Although one might theoretically refrain from such social login features and cross-site interactions, usage statistics show that more than 250 million people might not fully realize the privacy implications of opting-in. To make matters worse, certain Web sites do not offer even the minimum of their functionality unless users meet their demands for information and social interaction. At the same time, in a large number of cases, it is unclear why these sites require all that personal information for their purposes. In this paper, we mitigate this problem by designing and developing a framework for minimum information disclosure in social login interactions with third-party sites. Our example case is Facebook, which combines a very popular single sign-on platform with information-rich social networking profiles. Whenever users want to browse to a Web site that requires authentication or social interaction using a Facebook identity, our system employs, by default, a Facebook session that reveals the minimum amount of information necessary. Users have the option to explicitly elevate that Facebook session in a manner that reveals more or all of the information tied to their social identity. This enables users to disclose the minimum possible amount of personal information during their browsing experience on third-party Web sites.  相似文献   
2.
The purpose of the present study is to investigate the quasi‐static and the viscoelastic behavior of epoxy resin reinforced with starch powder. An increase in the elastic modulus on the order of 42% was achieved; a behavior that was predicted by the modulus prediction model (MPM). Next, the composite was subjected to flexural relaxation experiments, in order to determine the relaxation modulus, at different filler‐weight fractions and flexural deflections imposed. The viscoelastic models of the standard linear solid, the power law model and the residual property model (RPM) were applied in order to simulate/predict the stress relaxation curves. Predicted values derived from the application of the above models were compared to each‐other as well as to respective experimental findings. From the above comparison it was proved the superiority of the RPM model in predicting both the linear and the nonlinear viscoelastic response of the materials investigated. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41697.  相似文献   
3.
A new method was developed in this study for testing excised sheep mandibles as a cantilever. The method was used to determine the strength and stiffness of sheep hemi-mandibles including a 35 mm defect bridged by regenerated bone. Recombinant human bone morphogenetic protein-7 (rhBMP-7) in a bovine collagen type-I carrier was used for the bone regeneration. Initial tests on ten intact sheep mandibles confirmed that the strength, stiffness and area beneath the load-deformation curves of the right and left hemi-mandibles were not significantly different, confirming the validity of using the contra-lateral hemi-mandible as a control side. Complete bone regeneration occurred in six hemi-mandibles treated with rhBMP, but the quality and mechanical properties of the bone were very variable. The new bone in three samples contained fibrous tissue and was weaker and less stiff than the contra-lateral side (strength, 10-20 per cent; stiffness, 6-15 per cent). The other half had better-quality bone and was significantly stiffer and stronger (p < 0.05), with strength 45-63 per cent and stiffness 35-46 per cent of the contra-lateral side. Hemi-mandibles treated with collagen alone had no regenerated bone bridge suggesting that 35 mm is a critical-size bone defect.  相似文献   
4.
The zero-delay wavenumber spectrum (ZDWS) estimation approach is proposed for the analysis of array ECG signals as an alternative to isopotential mapping (IM). The ZDWS approach is advantageous because the key parameters related to cardiac electrical activation can be easily identified in the frequency-wavenumber domain. The method explains the data as the sum of wide-band planewaves projected onto the array plane and provides an accurate estimate of their number and bearing. The slowness distribution of each of the planewaves is then obtained by estimating their temporal spectrum. Simulated data and experimental ECG data collected from a canine epicardial preparation during control and localized myocardial ischemic condition'are analyzed via the ZDWS and IM. It is demonstrated that the ZDWS methodology provides a means for an objective, robust, and repetitive characterization of the array data which can explain the modulation in the cardiac activation wavefront produced by an area of localized coronary artery occlusion.  相似文献   
5.
Members of the cysteine and glycine-rich protein (CRP) family (CRP1, CRP2, and CRP3) contain two zinc-binding LIM domains, LIM1 and LIM2, and are implicated in diverse cellular processes linked to differentiation, growth control and pathogenesis. The solution structure of an 81-amino acid recombinant peptide encompassing the amino-terminal LIM1 domain of quail CRP2 has been determined by 2D and 3D homo- and heteronuclear NMR spectroscopy. The LIM1 domain consists of two zinc binding sites of the CCHC and the CCCC type, respectively, which both contain two orthogonally arranged antiparallel beta-sheets and which are packed together by a hydrophobic core composed of residues from the zinc finger loop regions. The CCCC zinc finger is followed by a short alpha-helical stretch. The structural analysis revealed that the global fold of LIM1 closely resembles the recently determined solution structures of the carboxyl-terminal LIM2 domains of quail CRP2 and chicken CRP1, and that LIM1 and LIM2 are independently folded structural and presumably functional domains of CRP proteins. To explore the dynamical properties of CRP proteins, we have used 15N relaxation values (T1, T2, and nuclear Overhauser effect (NOE) to describe the dynamical behavior of a LIM domain. A model-free analysis revealed local variations in mobility along the backbone of the quail CRP2 LIM1 motif. Slow motions are evident in turn regions located between the various antiparallel beta-sheets or between their strands. By use of an extended motional model, fast backbone motions were detected for backbone amide NH groups of hydrophobic residues located in the core region of the LIM1 domain. These findings point to a flexible hydrophobic core in the LIM1 domain allowing residual relative mobility of the two zinc fingers, which might be important to optimize the LIM1 interface for interaction with its physiological target molecule(s) and to compensate enthalpically for the entropy loss upon binding.  相似文献   
6.
This paper presents a 3-dimensional (3-D) frequency-wavenumber spectrum estimation (FWSE) approach to the analysis of ECG signals. This approach treats the data as ‘wavefronts plus noise’ and provides a means of estimating key parameters associated with propagating wavefronts. A high resolution technique based on minimum variance representations of 3-D data fields (3-D CLS technique) is employed to obtain the FWSE. Computer simulation results that demonstrate the high resolution property of the technique when compared with the maximum-likelihood method of Capon are presented. Results of application of the technique to epicardial ECG data collected from a sensor array are also presented and discussed.  相似文献   
7.
A new procedure is proposed for ARMA modeling of fourth-order cumulants and trispectrum estimation of non-Gaussian stationary random processes. The new procedure is applied to the identification of nonminimum phase systems for both phase and magnitude response estimation. It is demonstrated by means of comprehensive simulation examples that the ARMA approach exhibits improved performance over conventional trispectrum methods. ARMA model order selection criteria based on fourth-order cumulants are presented and their performance evaluated. The computational complexity of the ARMA and conventional trispectrum methods is also examined. The new procedure does not require knowledge of the non-Gaussian distribution.This work was supported by the Office of Naval Research under Contract No. ONR-N00014-86-K-0219.  相似文献   
8.
Background: End-stage renal disease (ESRD) is associated with alterations in T-cell immunity, including increased CD28null and reduced regulatory T cells (Tregs). However, whether immune disturbances are due to ESRD or primary disease is not yet clear. As diabetes mellitus is the leading cause of ESRD, we evaluated its impact on the immune profile of ESRD patients. Methods: CD28null, Tregs, and natural killer cells were initially analyzed by flow cytometry in 30 predialysis ESRD patients due to diabetes (DM), 30 non-DM (NDM), and 25 healthy controls. Measurements were repeated after 6 months on hemodialysis (HD) or peritoneal dialysis (CAPD). Results: The percentage of CD4 + CD28null cells, CD8 + CD28null cells, and Tregs showed significant differences in DM, NDM, and controls; mean rank 33.71 vs. 25.68 vs. 18.88, p = 0.006, 37.79 vs. 28.82 vs. 17.08, p = 0.008, and 20.79 vs. 26.12 vs. 41.33, p = 0.001, respectively. DM vs. NDM had increased CD4 + CD28null and CD8 + CD28null cells, 11.5% (1.5%–24%) vs. 4.1% (0–42.3%), p = 0.02 and 61.3% (24%–76%) vs. 43% (5.7%–85%), p = 0.04, respectively. After 6 months on HD but not CAPD, DM showed a significant further increase in CD4 + CD28null cells, from 30 (14–100) to 52.7 (15–203), p = 0.02; and CD8 + CD28null cells, from 137 (56–275) to 266 (103–456), p = 0.01. Conclusions: Diabetes mellitus affects T-cell subtypes even at predialysis stage, though changes become more prominent after commencement on HD.  相似文献   
9.
As technology scales, the increased vulnerability of modern systems due to unreliable components becomes a major problem in the era of multi-/many-core architectures. Recently, several on-line testing techniques have been proposed, aiming towards error detection of wear-out/aging-related defects that can appear during the lifetime of a system. In this work, firstly we investigate the relation between system test latency and test-time overhead in multi-/many-core systems with shared Last-Level Cache (LLC) for periodic Software-Based Self-Testing (SBST), under different test scheduling policies. Secondly, we propose a new methodology aiming to reduce the extra overhead related to testing that is incurred as the system scales up (i.e., the number of on-chip cores increases). The investigated scheduling policies primarily vary the number of cores concurrently under test in the overall system test session. Our extensive, workload-driven dynamic exploration reveals that there is an inverse relationship between the two test measures; as the number of cores concurrently under test increases, system test latency decreases, but at the cost of significantly increased test time, which sacrifices system availability for the actual workloads. Under given system test latency constraints, which dictate the recovery time in the event of error detection, our exploration framework identifies the scheduling policy under which the overall test-time overhead is minimized and, hence, system availability is maximized. For the evaluation of the proposed techniques, multi-/many-core systems consisting of 16 and 64 cores are explored in a full-system, execution-driven simulation framework running multi-threaded PARSEC workloads.  相似文献   
10.
Packet-based networks-on-chip (NoC) are considered among the most viable candidates for the on-chip interconnection network of many-core chips. Unrelenting increases in the number of processing elements on a single chip die necessitate a scalable and efficient communication fabric. The resulting enlargement of the on-chip network size has been accompanied by an equivalent widening of the physical inter-router channels. However, the growing link bandwidth is not fully utilized, because the packet size is not always a multiple of the channel width. While slicing of the physical channel enhances link utilization, it incurs additional delay, because the number of flit per packet also increases. This paper proposes a novel router micro-architecture that employs fine-grained bandwidth “sharding” (i.e., partitioning) and stealing in order to mitigate the elevation in the zero-load latency caused by slicing. Consequently, the zero-load latency of the Sharded Router becomes identical with that of a conventional router, whereas its throughput is markedly improved by fully utilizing all available bandwidth. Detailed experiments using a full-system simulation framework indicate that the proposed router reduces the average network latency by up to 19% and the execution time of real multi-threaded workloads by up to 43%. Finally, hardware synthesis analysis verifies the modest area overhead of the Sharded Router over a conventional design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号