首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
化学工业   3篇
金属工艺   1篇
轻工业   3篇
无线电   4篇
一般工业技术   3篇
自动化技术   1篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2011年   3篇
  2009年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Recent advancements in isolation and stacking of layered van der Waals materials have created an unprecedented paradigm for demonstrating varieties of 2D quantum materials. Rationally designed van der Waals heterostructures composed of monolayer transition-metal dichalcogenides (TMDs) and few-layer hBN show several unique optoelectronic features driven by correlations. However, entangled superradiant excitonic species in such systems have not been observed before. In this report, it is demonstrated that strong suppression of phonon population at low temperature results in a formation of a coherent excitonic-dipoles ensemble in the heterostructure, and the collective oscillation of those dipoles stimulates a robust phase synchronized ultra-narrow band superradiant emission even at extremely low pumping intensity. Such emitters are in high demand for a multitude of applications, including fundamental research on many-body correlations and other state-of-the-art technologies. This timely demonstration paves the way for further exploration of ultralow-threshold quantum-emitting devices with unmatched design freedom and spectral tunability.  相似文献   
2.
3.
The cardiac Mg2+-sensitive, TRPM6, and TRPM7-like channels remain undefined, especially with the uncertainty regarding TRPM6 expression in cardiomyocytes. Additionally, their contribution to the cardiac action potential (AP) profile is unclear. Immunofluorescence assays showed the expression of the TRPM6 and TRPM7 proteins in isolated pig atrial and ventricular cardiomyocytes, of which the expression was modulated by incubation in extracellular divalent cation-free conditions. In patch clamp studies of cells dialyzed with solutions containing zero intracellular Mg2+ concentration ([Mg2+]i) to activate the Mg2+-sensitive channels, raising extracellular [Mg2+] ([Mg2+]o) from the 0.9-mM baseline to 7.2 mM prolonged the AP duration (APD). In contrast, no such effect was observed in cells dialyzed with physiological [Mg2+]i. Under voltage clamp, in cells dialyzed with zero [Mg2+]i, depolarizing ramps induced an outward-rectifying current, which was suppressed by raising [Mg2+]o and was absent in cells dialyzed with physiological [Mg2+]i. In cells dialyzed with physiological [Mg2+]i, raising [Mg2+]o decreased the L-type Ca2+ current and the total delayed-rectifier current but had no effect on the APD. These results suggest a co-expression of the TRPM6 and TRPM7 proteins in cardiomyocytes, which are therefore the molecular candidates for the native cardiac Mg2+-sensitive channels, and also suggest that the cardiac Mg2+-sensitive current shortens the APD, with potential implications in arrhythmogenesis.  相似文献   
4.

This paper presents a novel micromachining process to fabricate a 140 GHz planar antenna based on gap waveguide technology to be used in the next-generation backhauling links. The 140 GHz planar array antenna consists of three layers, all of which have been fabricated using polymer-based microfabrication and injection molding. The 140 GHz antenna has the potential to be used as an element in a bigger 3D array in a line-of-sight (LOS) multiple input multiple output (MIMO) configuration to boost the network capacity. In this work, we focus on the fabrication of a single antenna array element based on gap waveguide technology. Depending on the complexity of each antenna layer’s design, three different micromachining techniques, SU8 fabrication, polydimethylsiloxane (PDMS) molding, and injection molding of the polymer (OSTEMER), together with gold (Au) coating, have been utilized to fabricate a single 140 GHz planar array antenna. The input reflection coefficient was measured to be below???11 dB over a 14% bandwidth from 132 to 152 GHz, and the antenna gain was measured to be 31 dBi at 140 GHz, both of which are in good agreement with the simulations.

  相似文献   
5.
The effects of proteins and low molecular weight surfactants (LMS) on spray drying and powder characteristics of model sugar-rich foods have been studied. Fructose and sucrose were selected as model sugar-rich foods and sodium caseinate (NaCas) was selected as a model protein. Sodium stearoyl lactylate (SSL) and Polysorbate 80 (Tween-80) were chosen as model ionic and non-ionic low molecular weight surfactants. The feed solutions for spray drying had 25% solid concentration in all. To achieve identical powder recoveries of the order of 80% much higher NaCas:fructose ratio (30:70) was required compared to NaCas:sucrose ratio (0.5:99.5) which corresponded to 7.89% and 0.13% of sodium caseinate (initial bulk concentration), respectively. There was no change in powder recovery when the SSL concentration was increased from 0.01% to 0.05% in fructose-NaCas-SSL solution and also addition of 0.01% Tween-80 into fructose-NaCas solution did not affect the powder recovery (76.7 ± 2.3%), however, it was slightly affected with the increase of Tween-80 to 0.05% (69.0 ± 1.9%). At NaCas concentration above critical micelle concentration of NaCas (>3% w/w), the presence of up to 0.05% low molecular weight surfactants had either no effect or minimal effect on the surface coverage of the droplets/particles and also on the powder recovery depending on the nature of the low molecular weight surfactants. The surface protein coverage and the recovery of the powder in sucrose-protein systems were very sensitive in the presence of low molecular weight surfactants due to being below the critical micelle concentration of NaCas. SSL displaced 2.0% and 29.3% of proteins from the droplet surface of sucrose-NaCas-SSL, respectively, when its concentration was varied from 0.01% to 0.05% thereby reducing the powder recovery from 75.5% to 30%. The addition of 0.01% Tween-80 in sucrose-NaCas solution resulted in a 48.2 ± 1.5% reduction in powder recovery and at 0.05% concentration, it displaced a substantial amount of NaCas from the droplet surface and no powder was recovered. These phenomena are explained on the basis of surface-glass transition temperature, dynamic surface tension, nature of surfactants and glass transition temperature of sugars used. X-ray diffraction and scanning electron microscopy results showed that the powders of sucrose-NaCas, sucrose-NaCas with 0.01% SSL and all powders of fructose were amorphous.  相似文献   
6.
Hydrogen, combined with fuel cell technology, is an option for reducing our reliance on hydrocarbon-based fuels. Solid oxide electrolyser cells (SOECs) have been studied as a possible technology to produce hydrogen from steam. As the current global energy mix is heavily reliant on hydrocarbon-based fuels, utilising existing technologies such as coal fired power plants, combined with SOECs in an integrated system, may enable a path towards reducing carbon dioxide emissions as well as creating a way of introducing ‘cleaner’ fuel.  相似文献   
7.
Silicon photonics has demonstrated great potential in ultrasensitive biochemical sensing. However, it is challenging for such sensors to detect small ions which are also of great importance in many biochemical processes. A silicon photonic ion sensor enabled by an ionic dopant–driven plasmonic material is introduced here. The sensor consists of a microring resonator (MRR) coupled with a 2D restacked layer of near‐infrared plasmonic molybdenum oxide. When the 2D plasmonic layer interacts with ions from the environment, a strong change in the refractive index results in a shift in the MRR resonance wavelength and simultaneously the alteration of plasmonic absorption leads to the modulation of MRR transmission power, hence generating dual sensing outputs which is unique to other optical ion sensors. Proof‐of‐concept via a pH sensing model is demonstrated, showing up to 7 orders improvement in sensitivity per unit area across the range from 1 to 13 compared to those of other optical pH sensors. This platform offers the unique potential for ultrasensitive and robust measurement of changes in ionic environment, generating new modalities for on‐chip chemical sensors in the micro/nanoscale.  相似文献   
8.
Aging is an unavoidable part of life. The more aged we become, the more susceptible we become to various complications and damages to the vital organs, including the kidneys. The existing drugs for kidney diseases are mostly of synthetic origins; thus, natural compounds with minimal side-effects have attracted growing interest from the scientific community and pharmaceutical companies. A literature search was carried out to collect published research information on the effects of resveratrol on kidney aging. Recently, resveratrol has emerged as a potential anti-aging agent. This versatile polyphenol exerts its anti-aging effects by intervening in various pathologies and multi-signaling systems, including sirtuin type 1, AMP-activated protein kinase, and nuclear factor-κB. Researchers are trying to figure out the detailed mechanisms and possible resveratrol-mediated interventions in divergent pathways at the molecular level. This review highlights (i) the causative factors implicated in kidney aging and the therapeutic aspects of resveratrol, and (ii) the effectiveness of resveratrol in delaying the aging process of the kidney while minimizing all possible side effects.  相似文献   
9.
Plasmonic biosensors based on noble metals generally suffer from low sensitivities if the perturbation of refractive‐index in the ambient is not significant. By contrast, the features of degenerately doped semiconductors offer new dimensions for plasmonic biosensing, by allowing charge‐based detection. Here, this concept is demonstrated in plasmonic hydrogen doped molybdenum oxides (HxMoO3), with the morphology of 2D nanodisks, using a representative enzymatic glucose sensing model. Based on the ultrahigh capacity of the molybdenum oxide nanodisks for accommodating H+, the plasmon resonance wavelengths of HxMoO3 are shifted into visible‐near‐infrared wavelengths. These plasmonic features alter significantly as a function of the intercalated H+ concentration. The facile H+ deintercalation out of HxMoO3 provides an exceptional sensitivity and fast kinetics to charge perturbations during enzymatic oxidation. The optimum sensing response is found at H1.55MoO3, achieving a detection limit of 2 × 10?9m at 410 nm, even when the biosensing platform is adapted into a light‐emitting diode‐photodetector setup. The performance is superior in comparison to all previously reported plasmonic enzymatic glucose sensors, providing a great opportunity in developing high performance biosensors.  相似文献   
10.
In today’s real world, an important research part in image processing is scene text detection and recognition. Scene text can be in different languages, fonts, sizes, colours, orientations and structures. Moreover, the aspect ratios and layouts of a scene text may differ significantly. All these variations appear assignificant challenges for the detection and recognition algorithms that are considered for the text in natural scenes. In this paper, a new intelligent text detection and recognition method for detectingthe text from natural scenes and forrecognizing the text by applying the newly proposed Conditional Random Field-based fuzzy rules incorporated Convolutional Neural Network (CR-CNN) has been proposed. Moreover, we have recommended a new text detection method for detecting the exact text from the input natural scene images. For enhancing the presentation of the edge detection process, image pre-processing activities such as edge detection and color modeling have beenapplied in this work. In addition, we have generated new fuzzy rules for making effective decisions on the processes of text detection and recognition. The experiments have been directedusing the standard benchmark datasets such as the ICDAR 2003, the ICDAR 2011, the ICDAR 2005 and the SVT and have achieved better detection accuracy intext detection and recognition. By using these three datasets, five different experiments have been conducted for evaluating the proposed model. And also, we have compared the proposed system with the other classifiers such as the SVM, the MLP and the CNN. In these comparisons, the proposed model has achieved better classification accuracywhen compared with the other existing works.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号