首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学工业   2篇
  2009年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Microfibrillar‐reinforced elastomer composites based on two dispersed phases, liquid crystalline polymer (LCP) and recycled poly(ethylene terephthalate)(rPET), and styrene‐(ethylene butylene)‐styrene (SEBS) were prepared using extrusion process. The rheological behavior, morphology, and thermal stability of SEBS/LCP and SEBS/rPET blends containing various dispersed phase contents were investigated. All blends and LCP exhibited shear thinning behavior, whereas Newtonian fluid behavior was observed for rPET. The incorporation of both LCP and rPET into SEBS significantly improved the processability by bringing down the melt viscosity of the blend system. The fibrillation of LCP dispersed phase was clearly observed in as‐extruded strand with addition of LCP up to 20–30 wt %. Although the viscosity ratio of SEBS/rPET system is very low (0.03), rPET domains mostly appeared as droplets in as‐extruded strand. The results obtained from thermogravimetric analysis suggested that an addition of LCP and rPET into the elastomer matrix improved the thermal resistance significantly in air but not in nitrogen. The simultaneous DSC profiles revealed that the thermal degradation of all polymers examined were endothermic and exothermic in nitrogen and in air, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
2.
Microfibrillar-reinforced composites based on two dispersed phases, liquid crystalline polymer (LCP) and recycled poly(ethylene terephthalate) (rPET), and polystyrene (PS) were prepared using extrusion process. The rheological behavior, morphology, and thermal stability of LCP/PS and rPET/PS blends containing various dispersed phase contents were investigated. All blends and LCP exhibited shear thinning behavior, whereas Newtonian fluid behavior was observed for rPET. The incorporation of both LCP and rPET into PS significantly improved the processability. The potential of rPET as a processing lubricant by bringing down the melt viscosity of the blend system was as good as LCP. The elongated LCP domains were clearly observed in as-extruded strand. Although the viscosity ratio of rPET/PS system was lower than that of LCP/PS system, most rPET domains appeared as small droplets. An addition of LCP and rPET into PS matrix improved the thermal resistance in air significantly. The obtained results suggested the high potential of rPET as a processing aid and thermally stable reinforcing-material similar to LCP. The mechanical properties of the LCP-containing blends were mostly higher than those of the corresponding rPET-containing blends when compared at the same blend composition.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号