首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
电工技术   1篇
化学工业   5篇
无线电   1篇
一般工业技术   1篇
  2018年   4篇
  2016年   2篇
  2012年   1篇
  2008年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
In this research, the effects of La0.7Sr0.3MnO3 additive on the phase evolution, microstructure, dielectric, ferroelectric and magnetic properties of BaZr0.07Ti0.93O3 ceramics were systematically investigated. The (BaZr0.07Ti0.93O3)/x(La0.7Sr0.3MnO3) or BZT/xLSM (where x?=?0, 5, 10 and 20?mol%) ceramics were prepared via a solid state reaction method. A pure perovskite phase is observed for the samples of x?≤?10?mol%. The M-H hysteresis loops also show an improvement in the magnetic behavior for higher LSM content samples as well as the modified ferroelectric properties. However, the 5?mol% sample exhibited the optimum ferroelectric and ferromagnetic properties with remnant magnetization (Mr) and remanent polarization (Pr) of 2.38?emu/g and 10.5?µC/cm2, respectively. The dielectric-temperature curves show that the two phase-transition temperatures as observed for the unmodified BZT ceramic merges into a single phase-transition temperature for the 5?mol% sample and then become flat curves for the 10?mol% sample. In addition, the mechanical properties i.e. Knoop hardness and Young's modulus values increase with increasing LSM content, where Knoop hardness and Young's modulus values for the 20?mol% sample are increased by ~ 45% and ~ 104%, respectively, as compared to the unmodified sample.  相似文献   
2.
In the present work, a new composite between β-tricalcium phosphate (a bioceramic material) and barium zirconium titanate (a ferroelectric material) were fabricated. Beta-tricalcium phosphate (β-TCP) powder was synthesized from egg shells while barium zirconium titanate powder was synthesized from metal oxide powders. The composites were fabricated by a solid-state reaction method. Effects of barium zirconium titanate on many properties of the composites were investigated. Barium zirconium titanate additive improves the electrical properties of the composites such as dielectric, ferroelectric and piezoelectric properties. Furthermore, the mechanical properties, such as hardness are improved by the additive. In-vitro bioactivity test suggests that β-tricalcium phosphate has a higher apatite forming ability as compared to the BZT. The obtained results indicate that the composites are a promising biomaterial candidate.  相似文献   
3.
The dielectric, ferroelectric, and electric field–induced strain behavior of Bi0.5(Na0.80K0.20)0.5TiO3 (BNKT) ceramics modified with (Ba0.70Sr0.30)O3 (BST) were investigated as a function of composition and temperature. The ceramic samples were synthesized by a solid‐state mixed oxide method and sintered at 1125°C for 2 h. The XRD and Raman spectra showed coexisting rhombohedral and tetragonal phases throughout the entire compositional range with the tetragonal phase becoming dominant at higher BST concentrations. For all compositions, the temperature dependence of the dielectric spectra revealed a frequency dependence that is characteristic of a relaxor mechanism. This suggests that these ceramics lacked long‐range order and it appears that the maximum disorder was observed for the composition with 5 mol% BST (BNKT–0.05BST sample). This was evidenced by the observation of pinched hysteresis loops, even at room temperature, and a significant decrease in the Pr and Ec values which resulted in large electric field–induced strains (Smax) of 0.40% and a normalized strain coefficient ( = Smax/Emax) of 732 pm/V. This significant strain enhancement at the composition of x = 0.05 may be attributed to both a composition‐induced structural phase transition and a field‐induced relaxor to ferroelectric phase transition.  相似文献   
4.
The (1-x)Ba(Zr0.25Ti0.75)O3-xSr(Fe0.5Nb0.5)O3 or (1-x)BZT-xSFN ceramics have been fabricated via a solid-state reaction technique. All ceramics exhibit a pure phase perovskite with cubic symmetry. The addition of a small amount of SFN (x?=?0.1) produces an obvious change in dielectric behavior. Very high dielectric constants (εr?>?164,000 at 1 kHz and temperature?>?150°C) are observed and the value is obviously higher than dielectric constants for Ba(Zr0.25Ti0.75)O3 and Sr(Fe0.5Nb0.5)O3 ceramics. The ferroelectric measurement data suggests that the unmodified sample exhibited a ferroelectric behavior. However, a transformation from a ferroelectric to a relaxor-like behavior is noted with increasing x concentration. Impedance Spectroscopy (IS) analysis indicates that the presence of excellent dielectric constants is due to the heterogeneous conduction in the ceramics after adding SFN, which can be explained in terms of the Maxwell-Wagner polarization mechanism.  相似文献   
5.
6.
Lead-free piezoelectric compositions of the (1-x)Bi0.5(Na0.40K0.10)TiO3-x(Ba0.7Sr0.3)TiO3 system (when x = 0, 0.05, 0.10, 0.15, and 0.20) were fabricated using a solid-state mixed oxide method and sintered between 1,050°C and 1,175°C for 2 h. The effect of (Ba0.7Sr0.3)TiO3 [BST] content on phase, microstructure, and electrical properties was investigated. The optimum sintering temperature was 1,125°C at which all compositions had densities of at least 98% of their theoretical values. X-ray diffraction patterns that showed tetragonality were increased with the increasing BST. Scanning electron micrographs showed a slight reduction of grain size when BST was added. The addition of BST was also found to improve the dielectric and piezoelectric properties of the BNKT ceramic. A large room-temperature dielectric constant, ε r (1,609), and piezoelectric coefficient, d 33 (214 pC/N), were obtained at an optimal composition of x = 0.10.  相似文献   
7.
Properties of lead-free Bi0.5-xLaxNa0.40K0.10Ti0.98Zr0.02O3 (x?=?0.000–0.040) ceramics were investigated. All ceramics have a pure perovskite structure. A high energy storage density (~1.00?J/cm3) at room temperature (RT) is noted for the x?=?0.030 sample, while x?=?0.020 and 0.040 samples have very high thermal stability of energy storage density of ~3% (at 75–150?°C). Furthermore, the x?=?0.030 and 0.040 samples have the highest energy storage efficiency (η) value of 94% at 125?°C with high thermal stability (η?=?84–95% at 25–150?°C). The x?=?0.005 sample has high electric field-induced strain (Smax?=?0.42%) and high normalized strain coefficient (d*33?=?Smax/Emax?=?700?pm/V) with large improvements (~200% and 163% for Smax and d*33, respectively), as compared to the based composition. This ceramic system has potentials for piezoelectric and/or energy storage density applications.  相似文献   
8.
We have used density functional theory to obtain the binding curves for a variety of hypothetical periodic structures of Al, Si, Pb, Sn and Au. Upon examining the resulting database of results for equilibrium bond lengths and radial force constants (within a nearest-neighbour model), we find that both decrease smoothly as coordination is reduced. The effect of dimensionality appears to be small. We find that the force constants at equilibrium vary as the inverse eighth power of the equilibrium bond length. We also find evidence that the force constants are sensitive only to the bond length, and not to the coordination number. We believe these results will be useful in formulating interatomic potentials, e.g., for nanosystems.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号