首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学工业   2篇
能源动力   1篇
无线电   1篇
一般工业技术   4篇
自动化技术   2篇
  2023年   1篇
  2013年   2篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2005年   1篇
  2004年   2篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Recently, we introduced a concept of combinatorial chemistry to computational chemistry and proposed a new method called “combinatorial computational chemistry”, which enables us to perform a theoretical high-throughput screening of catalysts. In the present paper, we reviewed our recent application of our combinatorial computational chemistry approach to the design of new catalysts for high-quality transportation fuels. By using our combinatorial computational chemistry techniques, we succeeded to predict new catalysts for methanol synthesis and Fischer–Tropsch synthesis. Moreover, we have succeeded in the development of chemical reaction dynamics simulator based on our original tight-binding quantum chemical molecular dynamics method. This program realizes more than 5000 times acceleration compared to the regular first-principles molecular dynamics method. Electronic- and atomic-level information on the catalytic reaction dynamics at reaction temperatures significantly contributes the catalyst design and development. Hence, we also summarized our recent applications of the above quantum chemical molecular dynamics method to the clarification of the methanol synthesis dynamics in this review.  相似文献   
2.
Dynamic composition and optimization of Web services   总被引:1,自引:0,他引:1  
Process-based composition of Web services has recently gained significant momentum for the implementation of inter-organizational business collaborations. In this approach, individual Web services are choreographed into composite Web services whose integration logics are expressed as composition schema. In this paper, we present a goal-directed composition framework to support on-demand business processes. Composition schemas are generated incrementally by a rule inference mechanism based on a set of domain-specific business rules enriched with contextual information. In situations where multiple composition schemas can achieve the same goal, we must first select the best composition schema, wherein the best schema is selected based on the combination of its estimated execution quality and schema quality. By coupling the dynamic schema creation and quality-driven selection strategy in one single framework, we ensure that the generated composite service comply with business rules when being adapted and optimized.  相似文献   
3.
This paper describes the design of a new kind of miniature abrading sphere, which is magnetically mounted inside a spherical gap and set in rotation pneumatically with air. Large eddy simulation is performed in conjunction with the compressible Smagorinsky model. Minimal temperature variation allows for the assumption of adiabatic walls. Fluid-solid interaction is modeled using the law of the wall for compressible turbulent flow. A parametric study is done to determine optimal geometric layout while taking physical restrictions into account. The resulting optimal configuration is then examined in detail in order to determine demands to be met by the computerized control of the magnetic bearing as well as to quantify the force available to the abrasion process. Finally, a mathematical relation is given that determines available abrasion force depending on standard volumetric flow rate and rotation frequency. The findings presented here provide a basis for further development of smaller versions of the tool.  相似文献   
4.
A systematic analysis of electron-transport characteristics for monomer, dimer, and tetramer multiporphyrinic systems is presented, to provide a thorough understanding of the structural dependence of electron transport related to the aromatic nature of the contact structure. Theoretical investigation shows that the electron-transport characteristics can be controlled by manipulating the pi-conjugated framework in the multiporphyrinic systems through the arrangement of the inner hydrogen atoms. The designed pi-conjugated framework assigns the distinct aromaticity on the contact structure, and the large aromatic nature of the contact structure increases conductivity. The feature emerging from this study is that the aromaticity and pi-conjugated framework are important factors that control the electron-transport characteristics in molecular-scale electronic devices, such as single-molecule switches.  相似文献   
5.
One-dimensional carbon nanotube (CNT) junctions with interesting device characteristics have been designed by encapsulating p- and n-type organic molecules into CNTs with electrophilic tetracyano-p-quinodimethane (TCNQ) and nucleophilic tetrakis(dimethylamino)ethylene (TDAE) molecules in order to explore the effect of encapsulation of organic molecules and rectifying behaviors of the designed one-dimensional CNT p-n junctions. Our results show that p- and n-type doping of CNTs and their associated charge transfer play an important role in determining the electron transport characteristics and lead to materials with unique properties, p-n junction diode, i.e. Zener-like diode. Furthermore, we show that the operational device characteristics of non-covalently doped CNT junctions originate from the distinct response of intrinsic transmission peaks of pure CNTs according to the type of dopant and the applied bias. We believe that the results give an insight into the design and implementation of various electronic logic functions based on CNTs for applications in the field of nanoelectronics.  相似文献   
6.
Recently, unimolecular devices have attracted significant attention as a ‘post-silicon technology’ to enable the fabrication of future nanoscale electronic devices. In this paper, we describe a candidate molecule for a rectifier function using porphyrin polymer and a photovoltaic cell using fullerene-based supramolecule. We have investigated the geometric and electronic structure of these organic molecules using an ab initio quantum mechanical calculation. These results for the porphyrin polymers show that the localization of the unoccupied orbital state on the acceptor moiety mostly depends on their structures. The calculated results for the electronic structure of a naphthalocyanine–fullerene supramolecule manifest that the HOMO’s were localized on the donor sub-unit and the LUMO’s were localized on theacceptor sub-unit.  相似文献   
7.
A systematic analysis of electron transport characteristics for 1D heterojunctions with two nitrogen‐doped (N‐doped) capped carbon nanotubes (CNTs) facing one another at different conformations is presented considering the chirality of CNTs (armchair(5,5) and zigzag(9,0)) and spatial arrangement of N‐dopants. The results show that the modification of the molecular orbitals by the N‐dopants generates a conducting channel in the designed CNT junctions, inducing a negative differential resistance (NDR) behavior, which is a characteristic feature of the Esaki‐like diode, that is, tunneling diode. The NDR behavior significantly depends on the N‐doping site and the facing conformations of the N‐doped capped CNT junctions. Furthermore, a clear interpretation is presented for the NDR behavior by a rigid shift model of the HOMO‐ and LUMO‐filtered energy levels in the left and right electrodes under the applied biases. These results give an insight into the design and implementation of various electronic logic functions based on CNTs for applications in the field of nanoelectronics.  相似文献   
8.
Nanoparticles under a few nanometres in size have structures and material functions that differ from the bulk because of their distinct geometrical shapes and strong quantum confinement. These qualities could lead to unique device applications. Our mass spectral analysis of CdSe nanoparticles reveals that (CdSe)(33) and (CdSe)(34) are extremely stable: with a simple solution method, they grow in preference to any other chemical compositions to produce macroscopic quantities. First-principles calculations predict that these are puckered (CdSe)(28)-cages, with four- and six-membered rings based on the highly symmetric octahedral analogues of fullerenes, accommodating either (CdSe)(5) or (CdSe)(6) inside to form a three-dimensional network with essentially heteropolar sp(3)-bonding. This is in accordance with our X-ray and optical analyses. We have found similar mass spectra and atomic structures in CdS, CdTe, ZnS and ZnSe, demonstrating that mass-specified and macroscopically produced nanoparticles, which have been practically limited so far to elemental carbon, can now be extended to a vast variety of compound systems.  相似文献   
9.
We present a multi-dimensional, multi-step negotiation mechanism for task allocation among cooperative agents based on distributed search. This mechanism uses marginal utility gain and marginal utility cost to structure this search process, so as to find a solution that maximizes the agents’ combined utility. These two utility values together with temporal constraints summarize the agents’ local information and reduce the communication load. This mechanism is anytime in character: by investing more time, the agents increase the likelihood of getting a better solution. We also introduce a multiple attribute utility function into negotiations. This allows agents to negotiate over the multiple attributes of the commitment, which produces more options, making it more likely for agents to find a solution that increases the global utility. A set of protocols are constructed and the experimental result shows a phase transition phenomenon as the complexity of negotiation situation changes. A measure of negotiation complexity is developed that can be used by an agent to choose an appropriate protocol, allowing the agents to explicitly balance the gain from the negotiation and the resource usage of the negotiation.This revised version was published online in August 2005 with a corrected cover date.  相似文献   
10.
2D phases of matter have become a new paradigm in condensed matter physics, bringing in an abundance of novel quantum phenomena with promising device applications. However, realizing such quantum phases has its own challenges, stimulating research into non-traditional methods to create them. One such attempt is presented here, where the intrinsic crystal anisotropy in a “fractional” perovskite, EuxTaO3 (x = 1/3 − 1/2), leads to the formation of stacked layers of quasi-2D electron gases, despite being a 3D bulk system. These carriers possess topologically non-trivial spin textures, indirectly controlled by an external magnetic field via proximity effect, making it an ideal system for spintronics, for which several possible applications are proposed. An anomalous Hall effect with a non-monotonic dependence on carrier density is shown to exist, signifying a shift in band topology with carrier doping. Furthermore, quantum oscillations in charge conductivity and oscillating thermoelectric properties are examined and proposed as routes to experimentally demonstrate the quasi-2D behavior.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号