首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
化学工业   2篇
金属工艺   2篇
一般工业技术   6篇
  2022年   1篇
  2021年   1篇
  2018年   2篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2003年   3篇
排序方式: 共有10条查询结果,搜索用时 46 毫秒
1
1.
Employing first-principles density functional theory based calculations we investigated the change in electronic structure of CaCu3B4O12 compounds as one moves from 3d (Co) to 4d (Rh) to 5d (Ir) element at B site. Our study sheds light on valences of Cu and B ions as one moves from 3d to 4d to 5d based compounds. The valence of Cu in Co and Rh compound turn out to be that of less known 3+ state, while that in Ir compound turn out to be commonly known 2+ state. Our first-principles study provide microscopic understanding of these different valences of Cu, in terms of changes in the mixing of Cu x 2 − y 2 and B-a 1g states, driven by changes in the crystal field and spin splitting. The stronger crystal field splitting for 4d and 5d elements compared to 3d at B site drive the low-spin state at Rh and Ir site as opposed to intermediate spin in case of Co.  相似文献   
2.
3.
By the example of sp 3-bonded semiconductors, we illustrate what 3rd-generation muffin-tin orbitals (MTOs) are. We demonstrate that they can be downfolded to smaller and smaller basis sets: sp3d10,sp3, and bond orbitals. For isolated bands, it is possible to generate Wannier functions a priori. Also for bands, which overlap other bands, Wannier-like MTOs can be generated a priori. Hence, MTOs have a unique capability for providing chemical understanding.  相似文献   
4.
Solution processable reduced graphene oxide–zinc selenide (RGO–ZnSe) nanocomposite has been successfully synthesized by an easy one-pot single-step solvothermal reaction. The RGO–ZnSe composite was characterized structurally and morphologically by the study of XRD analysis, SEM and TEM imaging. Reduction in graphene oxide was confirmed by FTIR spectroscopy analysis. Photocatalytic efficiency of RGO–ZnSe composite was investigated toward the degradation of Rhodamine B under solar light irradiation. Our study indicates that the RGO–ZnSe composite is catalytically more active compared to the controlled-ZnSe under the solar light illumination. Here, RGO plays an important role for photoinduced charge separation and subsequently hinders the electron–hole recombination probability that consequently enhances photocatalytic degradation efficiency. We expect that this type of RGO-based optoelectronics materials opens up a new avenue in the field of photocatalytic degradation of different organic water pollutants.  相似文献   
5.
The communication reviews the augmented space based approaches to thermodynamics and ordering of binary alloys. We give several examples of metallic alloys to illustrate our methodology.  相似文献   
6.
Double-perovskite compounds with general formula ABB′O6, have attracted a lot of attention in recent years due to a variety of properties exhibited by them. In this paper, we will review our recent study on a number of double-perovskite compounds, namely La-doped Sr2FeMoO6, Cr-based family of compounds, Sr2CrXO6 (X=W, Re, Os), characterized with spectacularly high ferromagnetic transition temperatures and the magneto-capacitive compound, La2NiMnO6, We will discuss the signature of hybridization-driven antiferromagnetism in La-doped Sr2FeMoO6, while the parent compound, Sr2FeMoO6, is a half-metallic ferromagnet. The magnetism in the 3d–5d double perovskite Sr2CrXO6 (X=W, Re, Os) is found to be driven by the interplay of the hybridization-driven mechanism and the superexchange, which resulted into progressive increase of T c as one moves from W to Re to Os at the B′ site. Our work, in the context of La2NiMnO6, identifies its superexchange-driven microscopic origin being responsible for the near room-temperature insulating ferromagnetic behavior.  相似文献   
7.
Herein, we report the one pot single step solvothermal synthesis of reduced grapheme oxide–cadmium zinc sulfide (RGO–Cd0.5Zn0.5S) composite. The reduction in graphene oxide (GO), synthesis of Cd0.5Zn0.5S (mentioned as CdZnS in the text) nanorod and decoration of CdZnS nanorods onto RGO sheet were done simultaneously. The structural, morphological and optical properties were studied thoroughly by different techniques, such as XRD, TEM, UV–Vis and PL. The PL intensity of CdZnS nanorods quenches significantly after the attachment of RGO, which confirms photoinduced charge transformation from CdZnS nanorods to RGO sheet through the interface of RGO–CdZnS. An excellent photocurrent generation in RGO–CdZnS thin-film device has been observed under simulated solar light irradiation. The photocurrent as well as photosensitivity increases linearly with the solar light intensity for all the composites. Our study establishes that the synergistic effect of RGO and CdZnS in the composite is capable of getting promising applications in the field of optoelectronic devising.  相似文献   
8.
Functionalized nanoparticles reveal new frontiers in therapeutics and diagnostics, simultaneously referred to as theranostics. Functionalization of an inorganic nanoparticle (NP) with an organic ligand determines the interaction of the functionalized NPs with various cellular components, leading to the desired therapeutic effect, while diminishing adverse side effects. Apart from the therapeutic effect of the nanoparticles, other physical properties of the organic-inorganic complex (nanohybrid) including fluorescence, X-ray or MRI contrast offer diagnosis of the anomalous target cell. In this study we functionalized Mn3O4 NPs with organic citrate (C−Mn3O4) and folic acid (FA−Mn3O4) ligands and investigated their antimicrobial activities using Staphylococcus hominis as a model bacteria, which can be remediated through their membrane rupture. While high-resolution transmission microscopy (HR-TEM), XRD, DLS, absorbance and fluorescence spectroscopy were used for structural characterisation of the functionalised NPs, zeta potential measurements and temperature-dependent reactive oxygen speices (ROS) generation reveal their drug action. We used high-end density functional theory (DFT) calculations to rationalise the specificity of the drug action of the NPs. Picosecond-resolved FRET studies confirm the enhanced affinity of FA−Mn3O4 to the bacteria relative to C−Mn3O4, leading to enhanced antimicrobial activity. We have shown that the functionalised nanoparticles offer significant X-ray contrast in in-vitro studies, indicating the FA−Mn3O4 NPs to be a potential theranostic agent against bacterial infection.  相似文献   
9.
10.
Drug delivery to a target without adverse effects is one of the major criteria for clinical use. Herein, we have made an attempt to explore the delivery efficacy of SDS surfactant in a monomer and micellar stage during the delivery of the model drug, Toluidine Blue (TB) from the micellar cavity to DNA. Molecular recognition of pre-micellar SDS encapsulated TB with DNA occurs at a rate constant of k1 ∼652 s−1. However, no significant release of encapsulated TB at micellar concentration was observed within the experimental time frame. This originated from the higher binding affinity of TB towards the nano-cavity of SDS at micellar concentration which does not allow the delivery of TB from the nano-cavity of SDS micelles to DNA. Thus, molecular recognition controls the extent of DNA recognition by TB which in turn modulates the rate of delivery of TB from SDS in a concentration-dependent manner.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号