首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146982篇
  免费   16311篇
  国内免费   10413篇
电工技术   12192篇
技术理论   3篇
综合类   13488篇
化学工业   20105篇
金属工艺   9685篇
机械仪表   10350篇
建筑科学   11613篇
矿业工程   5451篇
能源动力   4353篇
轻工业   12972篇
水利工程   4337篇
石油天然气   6494篇
武器工业   1961篇
无线电   17064篇
一般工业技术   14051篇
冶金工业   5673篇
原子能技术   2406篇
自动化技术   21508篇
  2024年   730篇
  2023年   2172篇
  2022年   4724篇
  2021年   6388篇
  2020年   4658篇
  2019年   3724篇
  2018年   3950篇
  2017年   4678篇
  2016年   4232篇
  2015年   6403篇
  2014年   8199篇
  2013年   9562篇
  2012年   11394篇
  2011年   12282篇
  2010年   11667篇
  2009年   11087篇
  2008年   11339篇
  2007年   11143篇
  2006年   9869篇
  2005年   7779篇
  2004年   5749篇
  2003年   4424篇
  2002年   4227篇
  2001年   3620篇
  2000年   2944篇
  1999年   1796篇
  1998年   962篇
  1997年   798篇
  1996年   669篇
  1995年   550篇
  1994年   421篇
  1993年   339篇
  1992年   226篇
  1991年   184篇
  1990年   156篇
  1989年   133篇
  1988年   84篇
  1987年   77篇
  1986年   66篇
  1985年   24篇
  1984年   30篇
  1983年   38篇
  1982年   29篇
  1981年   41篇
  1980年   30篇
  1979年   18篇
  1977年   8篇
  1976年   8篇
  1959年   28篇
  1951年   21篇
排序方式: 共有10000条查询结果,搜索用时 24 毫秒
1.
2.
3.
Photoresponsive biomaterials are experiencing a transition from in vitro models to in vivo demonstrations that point toward clinical translation. Dynamic hydrogels for cell encapsulation, light-responsive carriers for controlled drug delivery, and nanomaterials containing photosensitizers for photodynamic therapy are relevant examples. Nonetheless, the step to the clinic largely depends on their combination with technologies to bring light into the body. This review highlights the challenge of photoactivation in vivo, and presents strategies for light management that can be adopted for this purpose. The authors’ focus is on technologies that are materials-driven, particularly upconversion nanoparticles that assist in “direct path” light delivery through tissue, and optical waveguides that “clear the path” between external light source and in vivo target. The authors’ intention is to assist the photoresponsive biomaterials community transition toward medical technologies by presenting light delivery concepts that can be integrated with the photoresponsive targets. The authors also aim to stimulate further innovation in materials-based light delivery platforms by highlighting needs and opportunities for in vivo photoactivation of biomaterials.  相似文献   
4.
5.
Synthetic active matters are perfect model systems for non-equilibrium thermodynamics and of great potential for novel biomedical and environmental applications. However, most applications are limited by the complicated and low-yield preparation, while a scalable synthesis for highly functional microswimmers is highly desired. In this paper, an all-solution synthesis method is developed where the gold-loaded titania-silica nanotree can be produced as a multi-functional self-propulsion microswimmer. By applying light, heat, and electric field, the Janus nanotree demonstrated multi-mode self-propulsion, including photochemical self-electrophoresis by UV and visible light radiation, thermophoresis by near-infrared light radiation, and induced-charge electrophoresis under AC electric field. Due to the scalable synthesis, the Janus nanotree is further demonstrated as a high-efficiency, low-cost, active adsorbent for water decontamination, where the toxic mercury ions can be reclaimed with enhanced efficiency.  相似文献   
6.
Given the continuing issues of environment and energy, methane dry reforming for syngas production have sparked interest among researchers, but struggled with the process immaturity owing to catalyst deactivation. This review summarizes the recent advances in the development of efficient and stable catalysts with strong resistance to coking and metal sintering, including the application of novel materials, the assessment of advanced characterizations and the compatibility to improved reaction system. One feasible option is the crystalline oxide catalysts (perovskite, pyrochlore, spinel and LDHs), which feature a fine metal dispersion and surface confinement effect via a metal exsolution strategy and exhibit superior reactivity and stability. Some new materials (h-BN, clays and MOFs) also extend the option because of their unique morphology and microstructure. It also is elaborated that progresses were achieved in advanced characterizations application, leading to success in the establishment of reaction mechanisms and attributions to the formed robust catalysts. In addition, the perspective described the upgrade of reaction system to a higher reaction efficiency and milder reaction conditions. The combination of efficient reaction systems and robust catalysts paves a way for a scaling-up application of the process.  相似文献   
7.
To investigate the effect of cooking temperature (55, 65, 75, 85 and 95 °C) on texture and flavour binding of braised sauce porcine skin (BSPS), sensory acceptance, microstructure and flavour-binding capacity were investigated during the processing of BSPS. Samples cooked at 85 and 95 °C showed better texture and aroma scores. Hardness and chewiness of BSPS were obviously improved at 85 and 95 °C than control group. Collagen structure was significantly destroyed over 85 °C. The porcine skin collagen heated at 85 and 95 °C showed relatively higher flavour-binding capacity than other samples. The improvement of texture of BSPS was mainly attributed to the degradation of collagen. Higher aroma scores of BSPS were related to intense binding abilities with aroma compounds at 85 and 95 °C. Cooking at 85 or 95 °C could be an optimal cooking temperature for BSPS.  相似文献   
8.
Large domain wall (DW) conductivity in an insulating ferroelectric plays an important role in the future nanosensors and nonvolatile memories. However, the wall current was usually too small to drive high-speed memory circuits and other agile nanodevices requiring high output-powers. Here, a large domain-wall current of 67.8 μA in a high on/off ratio of ~4460 was observed in an epitaxial Au/BiFeO3/SrRuO3 thin-film capacitor with the minimized oxygen vacancy concentration. The studies from read current-write voltage hysteresis loops and piezo-response force microscope images consistently showed remaining of partially unswitched domains after application of an opposite poling voltage that increased domain wall density and wall current greatly. A theoretical model was proposed to explain the large wall current. According to this model, the domain reversal occurs with the appearance of head-to-head and tail-to-tail 180° domain walls (DWs), resulting in the formation of highly conductive wall paths. As the applied voltage increased, the domain-wall number increased to enhance the on-state current, in agreement with the measurements of current-voltage curves. This work paves a way to modulate DW currents within epitaxial Au/BiFeO3/SrRuO3 thin-film capacitors through the optimization of both oxygen vacancy and domain wall densities to achieve large output powers of modern domain-wall nanodevices.  相似文献   
9.
Zhang  Qi  Wang  Yujing  Zhang  Xueling  Song  Jun  Li  Yinlei  Wu  Xuehong  Yuan  Kunjie 《Journal of Materials Science》2022,57(14):7208-7224
Journal of Materials Science - Form-stable composite phase change materials (C-PCMs) prepared by microencapsulation method and porous matrix adsorption method need for compression molding after...  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号