首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学工业   10篇
  2015年   1篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
50 : 50 natural rubber (NR) and ethylene–propylene–diene monomer rubber (EPDM) blends were prepared with different contents of cashew nut shell liquid (CNSL), a natural product obtained from the shells of the cashew nut, as a plasticizer. For comparison, a commercial paraffin oil plasticizer was also used. The effect of plasticizer content on the cure characteristics, processability, and mechanical properties such as tensile strength, elongation at break, and Young's modulus before and after ageing was investigated. Scanning electron microscopy (SEM) was used to observe the blend morphology. The results indicated that the CNSL plasticizer resulted in lower Mooney viscosity and lower cure time of the 50 : 50 NR/EPDM blends. The incorporation of CNSL into 50 : 50 NR/EPDM blends improved tensile strength and elongation at break but decreased Young's modulus. On addition of CNSL the resistance of the blends to heat and weathering ageing improved. Scanning electron micrographs revealed that the morphology of the blend plasticized with CNSL is finer and more homogeneous compared with the blend plasticized with paraffin oil. Overall results indicate that CNSL can be used as a cheaper plasticizer to replace paraffin oil in NR/EPDM blends with improved processability and mechanical properties. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   
2.
The graft copolymerization of styrene (ST) and methyl methacrylate (MMA) onto styrene–butadiene rubber (SBR) latex prepared by seeded emulsion polymerization has been studied under various reaction conditions using cumene hydroperoxide redox initiator. The mechanism of graft copolymerization has been investigated. The synthesized graft copolymers were purified and then characterized by proton nuclear magnetic resonance (1H NMR) analysis. A 2 2 fractional factorial experimental design was applied to study the effects of the process variables such as the amount of initiator and emulsifier, the presence or absence of chain‐transfer agent, ST to MMA ratio, monomer to rubber ratio, and reaction temperature on the grafting efficiency. The analysis of the results from the design showed the sequence of the main effect on the observed response of the grafting of ST and MMA onto SBR and that the amount of chain‐transfer agent had a significant effect. Transmission electron microscopy was used to study the morphology of the graft copolymers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2867–2874, 2006  相似文献   
3.
Rice husk ash (RHA) obtained from agricultural waste, by using rice husk as a power source, is mainly composed of silica and carbon black. A two‐stage conventional mixing procedure was used to incorporate rice husk ash into natural rubber. For comparison purposes, two commercial reinforcing fillers, silica and carbon black, were also used. The effect of these fillers on cure characteristics and mechanical properties of natural rubber materials at various loadings, ranging from 0 to 40 phr, was investigated. The results indicated that RHA filler resulted in lower Mooney viscosity and shorter cure time of the natural rubber materials. The incorporation of RHA into natural rubber improved hardness but decreased tensile strength and tear strength. Other properties, such as Young's modulus and abrasion loss, show no significant change. However, RHA is characterized by a better resilience property than that of silica and carbon black. Scanning electron micrographs revealed that the dispersion of RHA filler in the rubber matrix is discontinuous, which in turn generates a weak structure compared with that of carbon black and silica. Overall results indicate that RHA can be used as a cheaper filler for natural rubber materials where improved mechanical properties are not critical. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 34–41, 2005  相似文献   
4.
Material waste from the production of autoclaved aerated concrete, a porous material, should be considered as a valuable byproduct for use as a filler material for the rubber industry. Natural rubber (NR) composites filled with different loading (over the range of 0–60 phr) of autoclaved aerated concrete waste (AACW) as a new eco‐friendly material were produced using two roll mills and then were studied for their cure characteristics, mechanical and aging properties, and morphology, and also compared with commercial fillers, calcium carbonate (CaCO3), and silica (SiO2). In most cases, the cure characteristics and mechanical and aging properties of the SiO2‐filled NR composites were significantly better than those of the AACW‐ and CaCO3‐filled NR composites. However, these properties for AACW‐filled composites appeared to be higher than CaCO3‐filled composites. The reason for this could be due to a larger surface area which is both porous and of an irregular shape of the AACW filler used. Scanning electron microscope images showed that the morphology of the rubber filled with SiO2 was finer and more homogenous compared with the rubber filled with AACW or CaCO3. Overall results revealed that the reinforcement ability of AACW‐filled NR composites was generally better when compared with CaCO3‐filled NR composites; therefore, AACW can be used effectively as a cheaper filler for production of rubber products where end‐use properties of a rubber product is specifically required. POLYM. COMPOS., 36:2030–2041, 2015. © 2014 Society of Plastics Engineer  相似文献   
5.
To improve the mechanical properties of poly(vinyl chloride) (PVC), the possibility of combining PVC with elastomers was considered. Modification of natural rubber (NR) by graft copolymerization with methyl methacrylate (MMA) and styrene (St) was carried out by emulsion polymerization by using redox initiator to provide an impact modifier for PVC. The impact resistance, dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM) of St and MMA grafted NR [NR‐g‐(St‐co‐MMA)]/PVC (graft copolymer product contents of 5, 10, and 15%) blends were investigated as a function of the amount of graft copolymer product. It was found that the impact strength of blends was increased with an increase of the graft copolymer product content. DMA studies showed that NR‐g‐(St‐co‐MMA) has partial compatibility with PVC. SEM confirmed a shift from brittle failure to ductility with an increase graft copolymer content in the blends. The mechanical properties showed that NR‐g‐(St‐co‐MMA) interacts well with PVC and can also be used as an impact modifier for PVC. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1666–1672, 2004  相似文献   
6.
Lime kiln dust (LKD) obtained from kraft chemical recovery systems by conversion of calcium carbonate (CaCO3) back into calcium oxide (CaO) for reuse in the causticizing process, is mainly composed of CaCO3. A two‐stage conventional mixing procedure was used to incorporate LKD into natural rubber (NR). For comparison purposes, four commercial fillers, stearic acid coated CaCO3, ground CaCO3, silica, and carbon black, were also used. The effect of these fillers on the curing characteristics and mechanical properties of NR materials at various loadings ranging from 0 to 60 phr were studied. The results indicate that the use of LKD filler resulted in a lower Mooney viscosity and shorter curing time in the NR materials. The incorporation of LKD into NR improved the Young's modulus and hardness but decreased the tensile strength and tear strength. However, LKD was better in processability than the commercial fillers. Scanning electron micrographs revealed that the morphology of the rubbers filled with reinforcing fillers, such as silica and carbon black, was finer and more homogeneous compared to the those of the rubbers filled with LKD and commercial CaCO3. The dispersion of LKD and commercial CaCO3 fillers in the rubber matrix was discontinuous, which in turn, generated a weak structure compared with the reinforcing fillers. According to these observations, LKD could be used as a cheaper filler for NR materials where improved mechanical properties are not critical. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
7.
The effects of incorporation of three different fillers, i.e., rice husk ash (RHA), silica, and calcium carbonate (CaCO3), over a loading range of 0–60 phr on the curing characteristics, processability, mechanical properties, and morphology of 75 : 25 natural rubber (NR)/ethylene‐propylene‐diene monomer (EPDM) blends were studied using a conventional vulcanization system. Filler loading and type influence the processability of the blends in which RHA and CaCO3 offer better processing advantage over silica. The best improvement in the tensile and tear strength and abrasion resistance of the 75 : 25 NR/EPDM blends with additional fillers was achieved when filled with silica. However, RHA and CaCO3 were better in resilience property compared to that of silica. The RHA filled blends showed higher failure properties and abrasion resistance but lower ozone resistance than that containing CaCO3. Scanning electron micrographs revealed that the morphology of the blend filled with silica is finer and more homogenous compared to the blend filled with RHA and CaCO3. According to these observations, RHA can be used as a cheaper filler to replace CaCO3 in rubber blends where improved mechanical properties are not so critical. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
8.
Graft copolymerization of styrene (St) and methyl methacrylate (MMA) in the presence of natural rubber latex using cumene hydroperoxide/tetraethylenepentamine redox initiator system was prepared at various process variables. The synthesized graft copolymers were purified and then characterized by Fourier transformed infrared spectroscopy analysis. A full 24 factorial experimental design was applied to study the effect of various process variables on grafting efficiency. The following four independent variables considered to be mainly affecting the grafting efficiency were reaction temperature, rubber‐to‐monomer ratio, St‐to‐MMA ratio, and initiator amount used in the secondary polymerization. It was shown in this study that the reaction temperature significantly influenced the grafting efficiency, increasing as the temperature was increased. The amount of grafting increased with increasing rubber‐to‐monomer ratio and St‐to‐MMA ratio, whereas the amount of grafting decreased with increasing amount of initiator. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 455–463, 2004  相似文献   
9.
The graft copolymerization of styrene and methyl methacrylate onto natural rubber latex was studied under various reaction conditions using a cumene hydroperoxide redox initiator. The monomer conversion, graft copolymer compositions, and grafting efficiency were determined. The synthesized graft copolymers were purified and then characterized by proton nuclear magnetic resonance (1H‐NMR) analysis and differential scanning calorimetry (DSC). A 2 fractional factorial experimental design was applied to study the main effects on the grafting. The variables investigated in this work were the amount of the initiator and emulsifier, the presence or absence of a chain‐transfer agent, the styrene‐to‐methyl methacrylate ratio, the monomer‐to‐rubber ratio, and the reaction temperature. The measured response for the experimental design was the grafting efficiency. The analysis of the results from the design showed the sequence of the main effects on the observed response of the grafting of styrene and methyl methacrylate onto natural rubber, in ascending order. The amount of the chain‐transfer agent and the reaction temperature in the range of the test had significant effects and one marginally significant effect was the monomer‐to‐rubber ratio. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 63–74, 2003  相似文献   
10.
The graft copolymerization of 50/50 (w/w) styrene/methyl methacrylate mixtures onto natural rubber seed latex were carried out by using cumene hydroperoxide/sodium formaldehyde sulfoxylate dihydrate/EDTA‐chelated Fe2+ as a redox initiator. The effects of the process factors such as the amount of initiator, emulsifier, and chain‐transfer agent; monomer‐to‐rubber ratio; and temperature on the grafting efficiency (GE) and grafting level (GL) are reported. The mechanism of graft copolymerization was investigated. The synthesized graft copolymers were purified and then characterized by proton nuclear magnetic resonance (1H‐NMR) analysis. Transmission electron microscopy (TEM) was used to study the morphology of the graft copolymers. It appears that the formation of graft copolymers occurs on the surface of the latex particles through a chain‐transfer process. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2993–3001, 2002; DOI 10.1002/app.2328  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号