首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   6篇
化学工业   20篇
金属工艺   4篇
机械仪表   1篇
建筑科学   1篇
矿业工程   1篇
能源动力   5篇
轻工业   11篇
石油天然气   1篇
无线电   2篇
一般工业技术   21篇
冶金工业   5篇
自动化技术   16篇
  2022年   4篇
  2021年   5篇
  2020年   4篇
  2019年   2篇
  2018年   2篇
  2017年   5篇
  2016年   7篇
  2015年   1篇
  2014年   8篇
  2013年   16篇
  2012年   4篇
  2011年   10篇
  2010年   7篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2004年   1篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1988年   1篇
排序方式: 共有88条查询结果,搜索用时 62 毫秒
1.
Wood biomass in Serbia is traditionally used for energy. However, the manner of its use is outdated, and efficiency is very low. Annually over 3.5 million m3 of wood is cut down for energy needs in Serbia. In order to better exploit all forms of woody biomass, especially the one that is now treated as waste, and in order to fulfil the obligations from the outlined Convention on Climate Change it is necessary to switch to a modern way of production and utilization of woody biomass. Serbia is now at the very beginning of this process. This paper gives an overview and an analysis of the possibilities of utilization of wood waste as a renewable source of energy and the problems that producers in Serbia are facing due to undeveloped markets and excessive funds that are needed to start the production of briquettes and pellets. The ecological and economical advantages of using woody biomass, as well the possible support measures for the use of woody biomass in Serbia are also the topic of this paper. The present situation in this area, the manner of waste management in sawmills and the reasons for the necessity of future development of this industrial production are also briefly described.  相似文献   
2.
Ternary Al-Ag-Ga system at 200 °C was experimentally and thermodynamically assessed. Isothermal section was extrapolated using optimized thermodynamic parameters for constitutive binary systems. Microstructure and phase composition of the selected alloy samples were analyzed using light microscopy, scanning electron microscopy combined with energy-dispersive spectrometry and x-ray powder diffraction technique. The obtained experimental results were found to be in a close agreement with the predicted phase equilibria. Hardness and electrical conductivity of the alloy samples from four vertical sections Al-Ag80Ga20, Al-Ag60Ga40, Ag-Al80Ga20 and Ag-Al60Ga40 of the ternary Al-Ag-Ga system at 200 °C were experimentally determined using Brinell method and eddy current measurements. Additionally, hardness of the individual phases present in the microstructure of the studied alloy samples was determined using Vickers microhardness test. Based on experimentally obtained results, isolines of Brinell hardness and electrical conductivity were calculated for the alloys from isothermal section of the ternary Al-Ag-Ga system at 200 °C.  相似文献   
3.
Monophasic gel with stoichiometric 3Al2O3·2SiO2 composition and gels with 0.99, 1.96, and 2.91 mol% La2O3 added were sol–gel derived. The crystallization path, structure evolution, microstructure, and morphology of calcined premullite powders and sintered ceramic bodies have been investigated as a function of La2O3 content and sintering temperature. In addition to mullite, spinel phase at about 980°C, and α‐alumina at above 1000°C were determined; however, neither La2O3 nor La‐related compounds had crystallized. The La2O3 predominately incorporated into the glassy phase, enhanced with La2O3 level, which affected both mullite structure and composition, as confirmed by electron microscopy, Rietveld structure refinement, determination of unit cell parameters, electron microscopy, and achieved density of the sintered bodies. Increased thermal treatment changes the alumina/silica ratio in mullite (towards 3:2 below 1200°C, and toward 2:1 above), and decreases the mullite/amorphous ratio. Sintered dense ceramic bodies revealed a positive densification effect and increased sinterability as a result of the lanthanum‐induced increase in glassy phase.  相似文献   
4.
The goal of this article is to apply the regional atmospheric numerical weather prediction Eta model and describe its performance in validation of the wind forecasts for wind power plants. Wind power generation depends on wind speed. Wind speed is converted into power through characteristic curve of a wind turbine. The forecasting of wind speed and wind power has the same principle.Two sets of Eta model forecasts are made: one with a coarse resolution of 22 km, and another with a nested grid of 3.5 km, centered on the Nasudden power plants, (18.22°E, 57.07°N; 3 m) at island Gotland, Sweden. The coarse resolution forecasts were used for the boundary conditions of the nested runs. Verification is made for the nested grid model, for summers of 1996–1999, with a total number of 19 536 pairs of forecast and observed winds. The Eta model is compared against the wind observed at the nearest surface station and against the wind turbine tower 10 m wind. As a separate effort, the Eta model wind is compared against the wind from tower observations at a number of levels (38, 54, 75 and 96 m).Four common measures of accuracy relative to observations - mean difference (bias), mean absolute difference, root mean square difference and correlation coefficient are evaluated. In addition, scatter plots of the observed and predicted pairs at 10 and 96 m are generated. Average overall results of the Eta model 10 m wind fits to tower observations are: mean difference (bias) of 0.48 m/s, mean absolute difference of 1.14 m/s, root mean square difference of 1.38 m/s, and the correlation coefficient of 0.79. Average values for the upper tower observation levels are the mean difference (bias) of 0.40 m/s; mean absolute difference of 1.46 m/s; root mean square difference of 1.84 m/s and the correlation coefficient of 0.80.  相似文献   
5.
6.
Densities, viscosities, and refractive indices of three binary systems consisting of 1-butanol with polyethylene glycols of different molecular weights (PEG 200 and PEG 400) or tetraethylene glycol dimethyl ether (TEGDME) were measured at ten temperatures (288.15, 293.15, 298.15, 303.15, 308.15, 313.15, 318.15, 323.15, 328.15, and 333.15) K and atmospheric pressure. Densities of the selected binary mixtures were measured with an Anton Paar DMA 5000 digital vibrating U-tube densimeter, refractive indices were measured with an automatic Anton Paar RXA-156 refractometer, while for viscosity measurements, a digital Stabinger SVM 3000/G2 viscometer was used. From these data, excess molar volumes were calculated and fitted to the Redlich–Kister equation. The obtained results have been analyzed in terms of specific molecular interactions and mixing behavior between mixture components, as well as the influence of temperature on them. Viscosity data were also correlated by Grunberg–Nissan, Eyring–UNIQUAC, three-body McAlister, and Eyring–NRTL models.  相似文献   
7.
Two molecular species are defined to be isoresonant if each have like numbers of the same (type of) bonds and there is an isomorphism between superpositions of pairs of Kekulé structures giving equivalent interaction patterns (as appear in Hamiltonian matrices). Thus a close physico-chemical correspondence follows, as predicted by a variety of semiempirical quantum-chemical models, and thence presumably for corresponding molecules. Notably simple structural criteria sufficient for isoresonance are found.  相似文献   
8.
The subject of this work is the use of non-stoichiometric titanium oxides – Magneli phases as support material of Co-based electrocatalysts aimed for hydrogen/oxygen evolution reaction. Commercial micro-scaled Ebonex (Altraverda, UK) was mechanically treated for 4, 8, 12, 16 and 20 h and further Co metallic phase was grafted by sol-gel method. Morphology of Co/Ebonex electrocatalysts was observed by means of TEM and SEM microscopy, while electrochemical behavior by means of cyclic voltammetry and steady-state galvanostatic method.  相似文献   
9.
Samarium (Sm)-doped ceria (CeO2) (SDC) is a promising material for high temperature electrochemical devices. Our work demonstrates that thin SDC films can be prepared by a cost-effective electrodeposition method at a low-temperature (30 °C) and − 0.8 V/SCE (saturated calomel electrode) potential. Analysis of the structural properties of the obtained SDC films, as-grown and annealed at 600 °C, has been carried out by X-ray diffraction (XRD). Morphology and film composition were studied using scanning electronic microscopy and energy dispersive X-ray analysis. Vibrational properties were determined by Raman spectroscopy. The effects of samarium addition into the deposition bath on the final film composition have been studied. According to XRD results, film crystallographic properties are directly linked to the percentage of Sm incorporated in the CeO2 lattice. We report on the electrochemical deposition of the SDC films performed over a large range of Sm additions (0-30%). The effect of temperature annealing has been studied as well.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号