首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
金属工艺   8篇
机械仪表   1篇
一般工业技术   2篇
冶金工业   1篇
  2022年   1篇
  2019年   1篇
  2015年   8篇
  2014年   2篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
采用规则溶液亚点阵模型计算了新型含Nb细晶高强IF钢在不同温度(1073~1473 K)下碳氮化物析出相的平衡体积分数、组成成分及化学驱动力,各元素的平衡质量分数;采用经典形核长大模型计算了实验钢在不同温度(1073~1473 K)下位错处形核的临界核心尺寸、临界形核功及相对形核速率。结果表明,随着温度的降低,析出相的平衡体积分数增大,Nb C在析出相中比例逐渐增加,Nb N在析出相中比例逐渐降低,析出相的化学驱动力增大,固溶在钢中的各元素的质量分数降低;在位错处形核的临界核心尺寸、临界形核功减小,相对形核率增大。至1073 K时,N元素已基本析出,C和N在析出相的成分中基本达到平衡。  相似文献   
2.
以新型含Nb细晶高强IF钢为研究对象,运用规则溶液亚点阵模型计算了实验钢从均热(1523K)冷却至室温(293K)的各个工艺过程中碳氮化物析出相的平衡体积分数、析出相的组成成分、各组元的平衡质量分数。计算结果表明,从均热到冷却至室温(1523K~293K)的过程中,随着温度的降低,固溶于基体中的Nb、C、N元素的质量分数逐渐减小,析出相平衡体积分数先增大后减小,NbN在析出相中比例逐渐降低,NbC在析出相中比例逐渐增加。至室温(293K)时,Nb和N元素几乎全部析出,碳氮化物不再继续析出。  相似文献   
3.
利用"冷压成型-真空烧结法"制备了碳化钨/高强钢复合材料。结合光学显微镜、扫描电镜和显微硬度计等分析测试技术对不同烧结温度下获得的复合材料以及界面的显微组织和硬度进行了分析。实验结果表明,烧结温度高于1 300℃时,碳化钨/高强钢复合界面存在明显的过渡层,且Fe、Co、Cr元素发生了明显的扩散,W元素在1 340℃时有微量扩散;随着烧结温度的升高,WC孔隙逐渐减少并趋于致密化;同时WC晶粒尺寸逐渐变大,且WC晶粒形状逐渐规则化。烧结温度为1 300和1 320℃时,WC晶粒尺寸均匀; WC的硬度随着烧结温度的升高而呈增大趋势,烧结温度为1 340℃时WC的硬度达到1 575 Hv_(0.1);在靠近结合界面处WC硬度明显高于碳化钨基体;在不同温度下,心部的高速钢材料硬度都在500 Hv_(0.1)左右。  相似文献   
4.
通过控制加热温度和保温时间,研究了X100管线钢奥氏体晶粒尺寸分布和长大规律。结果表明,随着加热温度升高、保温时间延长,奥氏体晶粒呈现逐渐长大趋势。当加热温度在1050~1150 ℃时,奥氏体晶粒快速长大;温度高于1200 ℃时,出现明显粗大的晶粒。通过试验数据线性回归,经模拟、计算得到X100管线钢的奥氏体晶粒长大模型Dt6.59=1.71×1020exp(-379691.29/RT)t+,D06.59经验证与试验数据拟合良好。  相似文献   
5.
以细晶高强IF钢为研究对象,在退火温度850℃、不同退火时间下对试验钢进行罩式退火试验。通过拉伸试验、电子背散射衍射技术(EBSD)等,研究了不同罩式退火时间对细晶高强IF钢再结晶织构和晶界特征分布的影响。结果表明:随着保温时间的延长,重位点阵晶界的出现频率先增加后减少,在40 min时达到峰值,这与晶粒度及晶粒均匀性有关,与再结晶织构强度也密切相关。晶粒尺寸适当,且均匀性好,重位点阵出现率越大,有利织构强度越高。当退火温度为850℃、保温40 min时,试验钢具有最强的γ纤维织构,最高的n、r值,和较好的晶界特征分布。  相似文献   
6.
采用透射电子显微镜(TEM),对细晶高强IF钢在不同退火温度条件下无沉淀析出区(PFZ)的形成机制及其对材料力学性能的影响规律进行研究。结果表明,由于析出相粒子的固溶和粗大化与晶界迁移造成的扫动效应,导致仅在晶界一侧形成独特的无沉淀析出区,退火过程中无沉淀析出区优先在晶界经过的区域形成。在退火过程中,随着退火温度的升高,细晶高强IF钢无沉淀析出区的平均宽度增大,其屈服强度降低,n值逐渐增加。  相似文献   
7.
以含Nb细晶高强IF钢热轧板为研究对象,研究了冷轧压下率对实验钢冷轧织构以及再结晶织构形成影响。结果表明,退火后铁素体晶粒细化,强度提高。实验钢经冷轧后主要的织构为{112}110、{111}112、{111}110、{001}110,并且随冷轧压下率增加,织构组分无变化,各组分强度整体增加。再经退火后,在α线上织构减弱,甚至一些织构逐渐消失。提高冷轧压下率时,织构峰值逐渐由{001}110转为{111}110。对于γ取向线,峰值由{111}110取向变为{111}112取向,最终{111}112比{111}110取向强度大。实验钢再结晶机制由定向形核和选择生长共同作用的结果,并且随冷轧压下率增大,{111}面织构强度增大,所以r(塑性应变比)值增大,深冲性能提高。  相似文献   
8.
加热过程中细晶高强IF钢奥氏体晶粒长大规律研究   总被引:1,自引:0,他引:1  
通过显微组织观察实验,对细晶高强IF钢在不同加热温度和保温时间下奥氏体晶粒长大规律进行研究。结果表明:随加热温度升高、保温时间延长,奥氏体晶粒尺寸逐渐增大。由实验结果可知细晶高强IF钢的晶粒粗化温度为1050℃,晶粒粗化时间为40 min。为保证微合金元素充分固溶,同时获得细小的奥氏体晶粒,生产中将加热温度控制在1050~1100℃、保温时间控制在30 min~40 min。通过对实验数据进行非线性回归建立了细晶高强IF钢奥氏体晶粒长大规律的数学模型,模型的计算结果与实验结果基本吻合。  相似文献   
9.
选择新型细晶高强IF钢为研究对象,在实验室进行了热轧、冷轧及罩式退火实验。利用光学显微镜、透射电镜复型和电子背散射衍射(EBSD)技术,研究了不同退火时间对细晶高强IF钢显微组织、析出相及织构的影响。结果表明,选择合适的退火时间,晶粒变得细小、均匀。细晶高强IF钢在退火过程中析出大量的Nb C、Nb(CN)相;随退火时间延长,钢中析出相粒子偏聚长大。为了获得较强的有利织构及优异的冲压性能,实验钢退火时间应选定在5 min。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号