首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
金属工艺   15篇
  2024年   1篇
  2023年   5篇
  2022年   4篇
  2021年   3篇
  2020年   2篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
研究了Ti14合金中Ti_2Cu相在500℃等温热暴露下的静态粗化行为,揭示出Ti_2Cu相的生长速率和形态变化受扩散机制控制。结果表明:静态粗化过程由快速粗化阶段和稳定粗化阶段组成,其中快速粗化阶段主要由末端迁移机制控制,由于条状Ti_2Cu相的末端与长轴方向界面能的差异,溶质原子的扩散过程导致板条状Ti_2Cu的粗化和破碎。而稳定粗化阶段主要由Oswald熟化机制控制,随着时间的延长,合金中Ti_2Cu析出物的尺寸持续增大,而粗化速率降低。Ti_2Cu相的快速粗化会引发第二相的强化,并有效提高快速粗化阶段的可塑性。但是在稳定粗化阶段,由于Ti_2Cu相的长大会增加其位错的有效滑移长度,并进一步影响其裂纹形核阻力同时改变界面构型和晶格失配,从而降低Ti14合金的拉伸塑性。  相似文献   
2.
采用脉冲电沉积技术在6061铝合金表面制备SiC/TiN颗粒增强Ni-Mo纳米复合镀层。通过在镀层中引入SiC、TiN纳米颗粒并改变电沉积的平均电流密度和占空比,调控复合镀层的微结构,探讨纳米颗粒增强涂层的成膜过程与晶粒细化机理,研究复合镀层的组织结构与耐蚀性、耐磨性的关系。结果表明:双纳米颗粒的加入使镀层结构由锥状向胞状转变,晶粒尺寸由29.86 nm减小至22.79 nm。其中在电流密度为8 A·dm~(-2),占空比为20%时制备的镀层最为均匀致密且Si C/Ti N颗粒复合量最高,分别为1.3%和3.1%(质量分数)。镀层具有典型的fcc结构且呈现出(111)择优取向,纳米颗粒均匀分散在Ni-Mo基体中。Tafel极化和浸泡试验研究表明Ni-Mo复合镀层的腐蚀电流密度为7.08μA/cm~2,相比之下在电流密度为4、8和12 A·dm~(-2)和占空比为40%、60%下制备的Ni-Mo/Si C-Ti N纳米复合镀层腐蚀电流密度分别为4.68、4.12、5.75、4.37和5.53μA/cm~2,分别降低了34%、42%、19%、38%和21%。研究发现在电流密度为8 A·dm~(-2),占空比为20%下制备的纳米复合镀层表现出最好的耐蚀性。与Ni-Mo镀层相比,SiC/TiN颗粒的引入显著地提升了镀层耐磨性。此外,还对脉冲共沉积机理进行了讨论。  相似文献   
3.
微弧氧化熔融冷却成膜过程出现的裂纹将影响膜层的强韧性和磨损性能。本研究利用ZrO2自身的强韧性,原位合成具有自修复裂纹作用的ZrO2/MgO膜层,研究原位合成的ZrO2对膜层磨损性能的影响。结果表明,微弧氧化原位合成的ZrO2在高温放电通道发生相变产生体积膨胀使得氧化锆界面萌生微裂纹并阻碍裂纹尖端的裂纹扩展,从而实现了膜层裂纹的自修复。通过控制锆源含量实现了对膜层中ZrO2含量的调控,膜层中原位ZrO2含量为32%时,ZrO2/MgO膜层裂纹呈现细小分散化,裂纹密度较传统膜层下降63.4%,摩擦系数减小53.4%,磨损量降低66.7%。研究认为,原位合成的ZrO2在膜层制备过程实现裂纹自修复并有效降低摩擦系数和磨损量,改善ZrO2/MgO膜层表面磨损性能。  相似文献   
4.
自封孔是提高微弧氧化膜层耐磨性和耐蚀性等综合性能的重要技术之一。针对物理封孔因封孔剂稳定性和膨胀作用限制膜层服役安全性等问题,本论文利用氧化石墨烯电性调控微弧氧化陶瓷膜层孔结构,制备具有减摩效应的GO/TiO2微弧氧化自封孔陶瓷膜层,研究了氧化石墨烯浓度对微弧氧化陶瓷膜层孔结构和减摩性的影响。研究发现,通过氧化石墨烯改变电解液导电性等参数影响反应过程,从而实现对GO/TiO2陶瓷膜层孔结的调控。氧化石墨烯浓度为5g/L时制备出了孔隙率、孔径和平均摩擦系数分别为3.6%、2.5μm和0.1的自封孔陶瓷膜层,相较于传统微弧氧化膜层分别下降了83.2%、78.4%和87.5%。研究认为通过控制氧化石墨烯浓度可以实现对微弧氧化陶瓷膜层表面孔结构的调控,为制备具有减摩效应的自封孔微弧氧化膜层提供了新思路。  相似文献   
5.
本文以Ti-6Al-7Nb合金为研究对象,采用Gleeble-3500热模拟压缩试验机进行不同温度和应变速率压缩试验。分析了Ti-6Al-7Nb合金在变形温度1023 K、1073 K、1123 K、1173 K,应变速率为0.005 s-1、0.05 s-1、0.5 s-1、5 s-1和10 s-1,最大变形量为60%下的高温变形行为及热加工特性。结果表明:变形温度与应变速率对Ti-6Al-7Nb合金的流动应力影响较大,其中应变速率是影响加工硬化过程的主要因素。Ti-6Al-7Nb合金在发生热塑性变形时后的物相主要有:初生α相、片层状α相、次生α相、片层状β相以及发生球化的初生α相等。Arrhenius本构方程模型适用于低温低应变速率和高温高应变速率形变条件的Ti-6Al-7Nb合金高温变形。利用MATLAB构建计算确定了合金最佳塑性变形区间为:应变速率0.0067 s-1-0.1353 s-1和温度1100-1173 K,在该区间有可能获取Ti-6Al-7Nb合金最佳的塑性变形工艺参数。  相似文献   
6.
TC21合金具备较高的强度和断裂韧性,然而其拉伸和冲击韧性的内在控制机理差异还不明确。本文通过调控固溶温度和冷却速率制备出不同显微组织,研究其拉伸和冲击性能。结果表明,拉伸和冲击韧性表现出不同的变化规律,塑性较好的双态组织的冲击韧性比塑性最差的全片层组织的冲击韧性低,说明拉伸性能和冲击韧性的内在控制机理有所不同,时效后的性能(时效后塑性无明显变化但冲击韧性显著下降)进一步证实了这一点。拉伸变形时,试样在发生颈缩前整个区域均发生塑性变形,双态组织中αp和βt之间发生的协调变形得以充分发挥,而全片层组织集束尺寸较大且其内部片层α取向一致,位错滑移长度较大,易发生塑性应变局域化,造成其强塑性匹配差于双态组织。冲击时,高应变速率作用下裂纹在缺口根部快速萌生和扩展,塑性变形集中在裂纹尖端附近小范围内,造成双态组织中αp和βt之间的协调变形不能充分发挥,而全片层组织的集束尺寸较大,导致集束界面对塑性变形的影响较小,此时片层α和β成为控制塑性变形的有效单元,粗片层α和β具有较好的塑性变形能力,造成其获得较高的萌生功,和拉伸表现出较差的塑性相悖,此外,大角度α集束界面造成裂纹偏转而形成曲折的路径,最终造成其冲击韧性高于双态组织。为获得拉伸性能和冲击韧性的良好匹配,可通过热处理调制出由含量较少的αp和内部形成粗大片层α和β的βt所构成的双态组织。  相似文献   
7.
本文系统地研究了粉末冶金态与铸态Ti-5553合金在温度为700 ℃~1100 ℃、应变速率为0.001 s-1~10 s-1条件下的高温不连续屈服行为和绝热温升效应,并对这两种同名义成分不同制备工艺的钛合金进行了对比研究。结果表明:两种合金不连续屈服的幅度均与应变速率呈正相关关系,并与温度呈近似负相关关系, 两种合金中出现的不连续屈服现象符合动态理论。在相同变形条件下,铸态合金中不连续屈服的幅度更大,其原因是相对于粉末冶金态合金,铸态合金中的起始位错密度低,这更有利于晶界处可动位错的突然增殖与扩展。两种合金在热变形中绝热温升的大小均随应变速率的升高而逐渐增大,并随着变形温度的升高而逐渐降低。在相同变形条件下,粉末冶金态合金的绝热温升效应相比与铸态合金较弱,这是因为粉末冶金态合金具有较低的变形抗力和较高的协调变形能力。  相似文献   
8.
本文借助Gleeble-3800热模拟试验机系统地研究了铸态粗晶Ti-5553合金在温度700 ℃~1100 ℃、应变速率为0.001 s-1~10 s-1条件下的高温变形行为。研究结果表明合金的流变应力对变形温度和速率都有强敏感性,流变软化过程也随变形参数的改变呈现出不同的模式。通过经典的动力学模型,建立了合金高温变形的本构关系和激活能分布图,进一步基于动态材料模型构建了合金的热加工图并实现了对不同加工区间变形机制的识别。合金在低温区(700 ℃)和高速率区( 1 s-1)均展现出失稳变形的特征,包括外部开裂、绝热剪切带、局部流变等机制,在实际加工中应对这些加工区域进行规避。合金在800 ℃及中低速率( 0.1 s-1)变形下的主导机制为α相的动态析出,在中高温(900 ℃-1100 ℃)及中低速率变形下的主导机制为动态回复与动态再结晶的结合。此外,合金在高温较低应变速率(1100 ℃/0.01 s-1)条件的变形中表现出大范围动态再结晶的行为特点并伴随稳定的流变软化,因此此条件附近的参数区间被认定为该合金的最优加工窗口,应在实际加工中给予优先考虑。  相似文献   
9.
采用微弧氧化技术在Ti-13Nb-13Zr合金表面制备HA/TiO2复合涂层。通过改变电解液中Ca/P比值,研究不同Ca/P比对微弧氧化涂层的相组成及组织变化,以及对耐磨性、耐蚀性与体外生物活性的影响。结果表明:随着电解液Ca/P比增大,涂层粗糙度及孔隙率增大。涂层相组成以锐钛矿及金红石为主,金红石相含量随着电解液Ca/P比增大而增大。乙酸钙含量为35 g/L的电解液制备的CA35涂层厚度达80.59μm,表面Ca/P比为1.98,表现出最好的耐磨耐蚀性能。与基体相比,CA35涂层平均摩擦系数约为0.19,下降了43%。采用Pt参比电极和质量分数0.9%NaCl测试溶液对涂层的耐蚀性进行检测。CA35涂层的腐蚀电流密度为4.94μA/cm2,腐蚀电位为-221.73 mV。CA35涂层在Kokubo溶液中产生矿化产物的速度最快。研究发现适当提高电解液Ca/P比能有效促进HA的形成,提高涂层的耐磨耐蚀性能,过高的Ca/P比会导致涂层性能下降。此外,对Ca/P比对涂层性能的影响机理进行了探讨。  相似文献   
10.
本文研究了近β-Ti合金、近α-Ti合金和(α+β)-Ti合金在0~-110℃、频率为200 Hz简谐振动过程中的振动模量及裂纹扩展行为,分析了温度对简谐振动中裂纹扩展速率及位错分布的影响,揭示了裂纹扩展机制。结果表明:低温下的简谐振动会加剧位错堆积与缠绕,从而增大阻尼,降低钛合金的振动回弹能力,提升钛合金的减振性能。其中,近β-Ti合金的储能模量整体比近α-Ti合金的低28.97%,其损耗模量和阻尼分别比(α+β)-Ti合金的高16.4%和9.88%,其低温下的减振性能优于其他两种钛合金。简谐振动在β相内产生的位错在相界累积并向相内滑移,导致应力集中和界面处微裂纹的产生,进而发生穿晶断裂。此外,伴随着β相中二次裂纹的产生,裂纹尖端受到不同方向的阻力,消耗了额外的简谐振动能量,尤其是当温度低于-60℃时,次生裂纹有效延缓了裂纹扩展速率。简谐振动在α相内产生的位错首先在相内被激活并不断向相界堆积,导致相内能量高于相界,裂纹发生沿晶扩展。在-60~-110℃温度区间,更低的损耗模量和阻尼使简谐振动能量作用在裂纹沿晶扩展上,增大了α相裂纹扩展速率。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号