首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
金属工艺   8篇
一般工业技术   1篇
  2013年   4篇
  2012年   1篇
  2011年   4篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
对添加不同含量Ce元素的Mg-Zn-Mn系ZM71变形镁合金进行挤压及热处理,测试不同状态下ZM71及ZM71-xCe合金的室温拉伸性能,利用光学金相显微镜(OM)、X射线衍射(XRD)、差热分析(DSC)、扫描电镜(SEM)以及能谱(DES)、透射电镜(TEM)等分析试验手段观察了不同状态下的显微组织,初步探讨了Ce元素在ZM71合金中的存在形式和作用机制及不同添加量对合金组织和力学性能的影响。结果表明:Ce元素主要以三元稀土τ相存在于合金中,主要分布在晶界和枝晶间,能够细化铸态组织;Ce元素能够明显细化挤压态合金的组织,提升力学性能,但添加量应控制在1%以内,其中ZM71-0.5Ce具有最佳的综合力学性能,抗拉强度、屈服强度和延伸率分别为318MPa、250MPa和13.6%;时效热处理不能提升挤压态高锌含量的Mg-Zn-Mn-Ce合金力学性能。  相似文献   
2.
研究均匀化、挤压以及热处理对Mg-5.77%Zn-0.94%Mn(ZM61)(质量分数)镁合金显微组织和力学性能的影响。结果表明:ZM61铸态组织呈枝晶结构,枝晶间网状的和枝晶内颗粒状的金属间化合物为Mg7Zn3;经(330℃,8 h)+(420℃,2 h)的两级均匀化处理后,化合物绝大部分溶解于基体;两级均匀化处理可大幅降低合金的挤压温度(降低幅度30℃)、减少挤压态组织中的残余流线、提高挤压态合金的伸长率、缩短固溶时间,但并未明显细化挤压态合金的晶粒;对于可时效强化的ZM61变形镁合金来说,晶粒大小对其力学性能的影响不大,起主要强化作用的是时效析出相的类型、尺寸和弥散程度;ZM61在时效过程中主要析出沿[0001]α-Mg的β1′杆状相和平行于(0001)α-Mg的β2′盘状相的析出相,其中β1′杆状相为起主要强化作用的析出相。  相似文献   
3.
利用透射电子显微镜(TEM)研究了Mg-6%(质量分数,下同)Zn-1%Mn(ZM61)镁合金中Mn在不同状态下的存在形式和作用。结果表明,铸态组织中大多数Mn固溶于基体中;均匀化处理以后,组织中析出少量细小的α-Mn颗粒;挤压和固溶时大部分Mn以形状规则的α-Mn颗粒的形式析出,主要有3种形态,即规则多边形(以六边形为主)、球状和棒状。通过高分辨透射电子显微分析发现,α-Mn颗粒与α-Mg基体之间存在共格界面关系((1010)α-Mg//(301)α-Mn,[1216]α-Mg//[12 3]α-Mn)。研究还发现α-Mn颗粒可以作为时效过程中MgZn2相的异质形核核心,但依附α-Mn颗粒形核的MgZn2相都较粗大。根据二维晶格错配度"Bramifit模型"计算得出,当α-Mn颗粒与MgZn2之间存在位向关系((200)α-Mn//(1010)MgZn2,[012]α-Mn//[1213]MgZn2)时,二者之间的晶格错配度仅为2.14%,且高分辨显微分析也发现α-Mn颗粒(200)面与MgZn2的(1010)呈共格关系。  相似文献   
4.
研究不同Zn含量的Mg-x%Zn-1%Mn(x=4,5,6,7,8,9)变形镁合金经热机械处理后的显微组织和力学性能的演变。在热挤压过程中,显微组织经动态再结晶得以充分细化。随着Zn含量的增加,动态再结晶晶粒有长大的趋势,然而,随之增加的第二相流线阻碍其长大。固溶处理使动态再结晶晶粒快速长大,但高Zn含量会阻碍晶界迁移,从而使最终的晶粒较为细小。在单级时效过程中,与基体共格的MgZn2弥散相会从过饱和固溶体中析出;在双级时效时,预时效过程中析出的大量纳米尺度的GP区为第二级时效过程中MgZn2相的析出提供了有效的异质形核核心,从而使该强化相的弥散度增加。挤压态试样的力学性能对Zn含量的变化不敏感,抗拉强度在300-320MPa之间波动,伸长率在11%-14%之间波动。时效态试样的强度随着Zn含量的增加以抛物线形式增加,单级时效态试样的抗拉强度从278MPa增加到374MPa,而双级时效态试样的抗拉强度从284MPa增加到378MPa,但所有试样的伸长率都小于8%。当Zn含量超过其在Mg-Zn二元合金体系中的最大固溶度(约6.2%)后,合金的强度增加缓慢但伸长率却迅速降低。因此,含6%Zn的Mg-Zn-Mn合金具有最佳的力学性能,即经过单级和双级时效后,合金的抗拉强度分别为352MPa和366MPa,伸长率分别为8%和5%。  相似文献   
5.
通过透射电子显微技术(TEM)研究了Mg-6 wt%Zn-1 wt%Mn (ZM61)合金在单级和双级时效过程中过渡相β1'和β2'的演变规律以及β1'杆状相在α-Mn颗粒上异质形核的原因。ZM61合金在不同温度的硬化曲线(130、160、180、200、230 ℃)均表明:与单级时效相比,双级时效的硬化效果更好同时硬化速率更快。由于β1'杆状相的表面能和形核能垒均小于β2'盘状相,因此,峰时效之前主要发生β1'杆状相的快速形核和伸长;β1'杆状相体积分数的增加在带来硬度增加的同时也提升了体系的应变能,β2'盘状相取代β1'杆状相可以释放这一累积的应变能,因而过时效阶段主要发生β2'盘状相对β1'杆状相的逐步取代。ZM61合金在预时效后(90 ℃/24 h),组织中存在高弥散度的G. P. 区(~10 nm),它们可以作为第二级时效过程中β1'杆状相的形核核心,从而大幅提升了杆状相的弥散度。由于β1'杆状相在α-Mn颗粒上异质形核可以形成β1'/α-Mn共格界面,取代之前的非共格的α-Mn/α-Mg界面,从而有效降低了体系的界面能,因此时效态组织中普遍存在β1'杆状相在α-Mn颗粒上异质形核的现象  相似文献   
6.
研究了Zn含量和热处理工艺对挤压态Mg-x%Zn-1%Mn (x=4, 5, 6, 7, 8, 9,质量分数)镁合金组织和力学性能的作用规律。结果表明:Zn含量增加,挤压时动态再结晶趋于完全且小晶粒容易长大,同时第二相流线亦随之增加并阻碍其长大;再结晶晶粒在固溶过程中会长大,但Zn含量越高长大越困难,最终其晶粒更细小。通过透射电子显微镜(TEM)研究发现,时效态合金中主要存在2种亚稳相,即:长轴沿[0001]α的杆状相(β1′相)和(0001)α上的盘状相(β2′相),它们与基体之间存在共格或半共格界面,杆状β1′ 相对位错运动的阻碍更加强烈;根据X射线衍射(XRD)的分析结果,可知2种相都是具有Laves结构的MgZn2相。双级时效处理在低温预时效阶段从过饱和固溶体析出G.P.区,为第二级时效提供形核核心,从而细化了β1′ 和β2′ 相,增加了其弥散度。高Zn含量合金在180 ℃时效16 h后发生了过时效,通过消耗β1′ 和β2′ 而形成了大块的Mg-Zn化合物。在时效态组织中,Mn以杆状析出,可以作为β1′和β2′相的形核核心,使二者发生粗化。挤压态合金的力学性能对Zn含量的变化不敏感;时效态合金的强度随Zn含量的增加呈抛物线增加,当Zn含量大于6%时,强度增加缓慢,延伸率急剧降低,这与高锌合金容易过时效且存在残余流线有关。故含6%Zn合金具有最佳的力学性能  相似文献   
7.
通过光学金相、扫描电镜以及能谱分析、显微硬度和室温力学性能测试、X射线衍射分析,研究了不同热处理工艺对Mg-6% Zn-1% Mn(ZM61)镁合金组织和力学性能的影响.结果表明,ZM61在420℃下挤压成型后,合金完成动态再结晶并形成了细小的再结晶晶粒;与挤压态相比,挤压后直接时效(T5)处理可以提高合金的强度,但“固溶+时效”处理(T6,T4+双级时效)能更大幅度地强化ZM61镁合金,其抗拉强度最高可达362 MPa,说明人工时效前的固溶处理是必要的,且最佳的固溶处理工艺是420℃×2h;挤压后直接时效的ZM61合金的失效形式为混合断裂,而经“固溶+时效”处理后为解理断裂.  相似文献   
8.
采用显微硬度测试、拉伸试验、金相观察和TEM观察,研究冷塑性变形对Mg-6%Zn-1%Mn(ZM61)合金时效硬化和力学性能的影响。在420℃固溶处理1h后,对ZM61挤压棒材试样进行室温拉伸变形,塑性应变有3种:0、5%和10%,预变形后再进行人工时效。时效硬化曲线表明:预变形可以显著加快硬化速率且提高峰值硬度;然而,当应变量由5%增加到10%后,峰值硬度并未增加。室温拉伸性能表明:预变形量增加,屈服强度和抗拉强度增加,伸长率略有降低,且屈服强度的增加幅度大于抗拉强度的。金相组织观察表明:当预变形应变量为5%时,金相组织中未观察到孪晶;预变形10%的组织中出现了大量的孪晶。TEM观察表明:预变形可以增加峰时效态组织中β1′杆状相的数量。  相似文献   
9.
利用光学显微镜、X射线衍射、扫描电镜和差热分析等手段研究添加Ce对Mg-6Zn-1Mn镁合金在不同状态下的微观组织和相组成的影响,并对合金的室温力学性能进行测试和比较。结果表明:添加的Ce元素以Mg12Ce相存在于合金中,主要分布在晶界和枝晶间,铸态晶粒得到细化;添加Ce元素能够明显地提高挤压态Mg-6Zn-1Mn合金的屈服强度和伸长率,这是由于热挤压过程中弥散分布在晶界上的Mg12Ce相能够有效钉扎晶界,抑制再结晶晶粒长大,从而得到更加细小的热变形晶粒组织;然而,添加Ce元素恶化了时效态Mg-6Zn-1Mn合金的力学性能,这是因为热处理不能使这些Mg12Ce相固溶于基体中,在拉伸断裂时Mg12Ce相表面形成微裂纹,导致力学性能下降。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号