首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   9篇
  国内免费   2篇
电工技术   6篇
化学工业   2篇
金属工艺   52篇
机械仪表   5篇
建筑科学   3篇
武器工业   5篇
一般工业技术   27篇
冶金工业   3篇
自动化技术   1篇
  2023年   4篇
  2022年   3篇
  2021年   6篇
  2020年   1篇
  2019年   7篇
  2018年   4篇
  2017年   4篇
  2016年   3篇
  2015年   4篇
  2014年   6篇
  2012年   6篇
  2011年   7篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   8篇
  2004年   2篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   4篇
  1994年   2篇
  1992年   3篇
排序方式: 共有104条查询结果,搜索用时 0 毫秒
1.
晶界结构对Al-Mg-Li-Cu系合金应力腐蚀性能的影响   总被引:1,自引:0,他引:1  
本文研究了合金晶界结构对8090和1430铝理合金的应力腐蚀性能的影响。结果表明:随着微量稀土元素Ce的加入,8090和1430合金晶界析出相(T_2相) ̄[1]均有不同程度的长大,且间距拉长。8090合金晶内还析出大量S′相 ̄[1],小角晶界也大量增多。由于粗大的晶界析出相减缓了阳极溶解过程,从而提高了合金的抗应力腐蚀能力。  相似文献   
2.
彭德林  陆政 《铸造》1992,(7):23-26
研究了锆对铸造铝锂合金组织及性能的影响。结果表明,微量锆能强烈地细化铝锂合金的铸态晶粒及枝晶组织,且对微观偏析有减轻作用;合金的拉伸性能随含锆量增加而大幅度改善:观察Al—Li—Cu铸造合金的时效组织发现,亚晶界PFZ是不连续的,对合金的断裂过程难以产生重大影响,参与断裂过程的主要是晶粒的晶界。同时还发现,锆在一定含量范围内增加时,能显著加快δ′相的时效过程,增加δ′相的体积份数。  相似文献   
3.
In order to develop a new high strength and high tolerance-resistance Al-Li alloy which can be used in aerospace industry, the effects ofmicroalloying elements such as Mg, Ag, Mn and Zn on the mechanical properties of Al-Cu-Li alloys were studied. The results show that the strengthening effects of Mg+Ag and Mg+Zn additions are higher than those of the individual Mg, Ag or Zn addition. The element Mn can also bring some extent strengthening effects on the alloys, but it has nothing to do with the other microalloying elements present or not. Finally, a new Al-Li alloy with Mg+Zn+Mn additions was developed, which possesses high strength and high tolerance-resistance promising properties for aerospace applications.  相似文献   
4.
2A66铝锂合金板材各向异性研究   总被引:1,自引:0,他引:1  
采用布氏硬度与拉伸性能测试以及OM,SEM和TEM分析,研究2A66铝锂合金板材力学性能的各向异性随时效时间变化的规律和合金时效状态下的显微组织,并探讨影响各向异性的主要因素。结果表明:165℃峰值时效前,随时效时间的延长,2A66铝锂合金力学性能的各向异性程度逐渐下降,过时效后合金的各向异性有所增强,伸长率的各向异性大于强度各向异性。峰时效(64h)时合金的σ_b,σ_(0.2),δ的IPA值均达到了最低值,分别为3.0%,3.0%,12.2%,此时合金也获得了较好的强塑性结合,轴向σ_b,σ_(0.2),δ分别为526.5,448.9MPa,10.1%。不同热处理状态下,2A66铝锂合金平面各向异性的总体表现为:纵向(0°)和横向(90°)的强度最高,45°方向最低;45°方向试样的伸长率最高,纵向和横向最低。  相似文献   
5.
高文林  白耀芳  王海龙  孙刚  陆政 《材料导报》2017,31(10):116-120, 126
分别采用低频电磁铸造(LFEC)与传统半连续铸造(DC)制备n-SiC_p/2024复合材料铸锭,并对铸锭进行挤压以及T6热处理。通过金相组织观察(OM)、TEM、室温力学性能测试等手段,分别研究了低频电磁铸造与传统半连续铸造工艺对n-SiC_p/2024复合材料的微观组织、力学性能的影响情况。实验结果表明:DC制备的n-SiC_p/2024复合材料铸锭表面局部存在偏析瘤,大多数n-SiC_p团聚在晶界处,只有少数聚集在晶粒内部;LFEC制备的n-SiC_p/2024复合材料铸锭组织晶界清晰,n-SiC_p团聚现象基本消失,组织均匀,晶粒细化效果明显。LFEC制备工艺可以有效细化n-SiC_p/2024复合材料铸锭的晶粒尺寸,其电磁搅拌作用对消除n-SiC_p颗粒的团聚现象有显著作用;与DC工艺相比,LFEC可同时提高复合材料的强度与延伸率。  相似文献   
6.
研究了Al-Mg-Sc超塑合金在200~500℃的高温力学性能,并对实验残样进行了微观组织分析.结果表明,Al-Mg-Sc合金在250~500℃区间内均具有一定的超塑性;在300~400℃超塑成形时强度较低,成形后制件使用性能较好,工程化条件下可选择使用;合金高温断裂机制由穿晶断裂向沿晶断裂转变的温度点在300℃附近,在此温度以下晶粒强度低于晶界强度,在此温度以上晶粒强度高于晶界强度.  相似文献   
7.
采用扫描电镜观察(SEM)、透射电镜(TEM)、高温拉伸性能和高温冲击性能测试等方法,研究了不同均匀化处理工艺对一种采用常规半连续铸造方法生产的新型Al-Zn-Mg-Cu合金组织和锻造性能的影响。结果表明:随均匀化温度的升高,合金铸锭中的枝晶组织及难溶非平衡共晶相逐渐溶入基体中;当均匀化温度低于450℃时,基体中仍残留部分枝晶组织,并且合金的工艺塑性偏低;当均匀化温度达到470℃时,枝晶组织充分回溶到基体中,使铸锭获得最优的工艺塑性。铸锭经470℃/36h均匀化处理后,通过工艺塑性实验确定合金在380~430℃之间具有良好的锻造性能。根据以上实验结果,确定该新型Al-Zn-Mg-Cu合金的均匀化处理工艺为470℃/36h;锻造温度为380~430℃。  相似文献   
8.
一种新型Al-Zn-Mg-Cu-Zr合金的变形行为研究   总被引:1,自引:0,他引:1  
通过动态镦粗压缩实验的方法研究了一种新型Al-Zn-Mg-Cu-Zr合金的变形行为。结果表明:Al-Zn-Mg-Cu-Zr合金在350℃以下变形时,由于变形温度较低,在变形过程中发生动态析出行为,合金晶内析出细小沉淀相,对合金的进一步变形不利;当变形温度高于400℃时,合金没有出现动态析出行为;当变形温度继续升高到450℃时,合金出现了动态再结晶和晶粒长大现象。所以,该Al-Zn-Mg-Cu-Zr合金的最佳变形温度为400~420℃,极限变形量为60%。  相似文献   
9.
含锆超高强铝合金的研究及发展概况   总被引:14,自引:0,他引:14  
近年来,含锆超高强铝合金蓬勃发展,获得了广泛的应用,回顾了含锆超高强铝合金的历史及发展过程,重点讨论了锆元素在合金中的形式及作用机理,并就当前工作的重点及研究方向提出了一些看法及建议。  相似文献   
10.
对7A99超高强铝合金反向挤压板材采用T6峰值时效处理与-180℃冷热循环时效热处理(简称T6-DCT),通过XRD、TEM、HRTEM与3DAP研究-180℃深冷处理对7A99铝合金反向挤压板材强韧性能以及析出行为的影响。结果表明,-180℃冷热循环时效处理使得铝基体的晶格常数由由0.40551 nm 增至0.40626 nm,起到了一定的固溶强化作用;-180℃冷热循环时效处理后晶粒内部生成大量与基体非共格的η相,晶界处η相呈现断续分布并形成晶界无析出带,降低材料的拉伸强度;-180℃冷热循环时效处理促进基体中Zn和Mg元素原子的微观偏聚,导致了Zn和Mg元素的非均匀析出;-180℃深冷处理可以减小时效终态析出相的平均等效半径与析出密度,将等效半径由1.2 nm减小至1.14 nm,将析出密度由4.53×1024/m3降低至3.87×1024 /m3,削弱析出强化效果; -180℃冷热循环时效处理后合金的强韧匹配性能得到显著改善,强度略有降低,韧性显著提高。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号