首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学工业   1篇
金属工艺   2篇
一般工业技术   8篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  1998年   2篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Nanocrystalline magnesium titanate was synthesized through an auto-ignited combustion method. The phase purity of the powder was examined using X-ray diffraction, thermo gravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy and Raman spectroscopy. The transmission electron microscopy study showed that the particle size of the as-prepared powder was in between 20 and 40 nm. The nanopowder could be sintered to 98% of the theoretical density at 1200 °C for 3 h. The microstructure of the sintered surface was examined using scanning electron microscopy. The dielectric constant (?r) of 16.7 and loss factor (tan δ) of the order of 10−4 were obtained at 5 MHz when measured using LCR meter. The quality factor (Qu × f) 73,700 and temperature coefficient of resonant frequency (τf) −44.3 ppm/°C, at 6.5 GHz are the best reported values for sintered pellets obtained from phase pure nanocrystalline MgTiO3 powder.  相似文献   
2.
A single step co-precipitation route has been employed for the first time in the preparation of ZnO nanoparticles using ammonium hydroxide and zinc nitrate tetrahydrate. The X-ray diffraction analysis revealed that the synthesized powder has the hexagonal (wurtzite) structure. The as-prepared ZnO powder was well crystalline, without any calcination. This is a promising result compared to those mentioned in the literature, in which crystallization of ZnO nanoparticles was detected at > 300 °C. The average crystallite size of the as-prepared ZnO nanopowder is 20-40 nm. The nanocrystalline ZnO could be sintered to ~ 95% of the theoretical density at 1300 °C in 4 h.  相似文献   
3.
The nanoparticles of Ba2RESbO6 (RE = Sm, Gd, Dy and Y) were synthesized using auto ignition combustion process. The structure and phase purity of the as-prepared nanopowders were examined by X-ray diffraction pattern. A systematic analysis of the structure of the four compounds was carried out for the first time by recording Raman and IR spectra. The four Raman active modes A1g, Eg and 2F2g were observed as strong or medium intense bands in the Raman spectra and the IR active F1u(1) mode is obtained as a strong absorption band around 630 cm−1 in all the four compounds. Hence it is confirmed that the above compounds were crystallized in the cubic symmetry with space group.  相似文献   
4.
The percolation behavior of the normal-state resistivity and superconductivity of the YBa2Cu3O7?δBa2GdNbO6 composite system were studied by X-ray diffraction and temperature-resistivity measurements. No detectable chemical reaction was observed between the YBa2Cu3O7?δ superconductor and the ceramic insulator Ba2GdNbO6, even after severe heat treatment above 950°C. The normal-state and superconducting percolation threshold values were found to be 17 vol.% and 30 vol.% of YBa2Cu3O7?δ respectively in the YBa2Cu3O7?δ-Ba2GdNbO6 composite system. The values obtained for the critical exponents describing the normal-state pecolation behavior of the system matched fairly well with the theoretically expected values for an ideal metal-insulator composite system.  相似文献   
5.
Nanocrystals of a new complex perovskites ceramic oxide, barium thulium antimony oxide - Ba2TmSbO6, were synthesized using a single step auto-ignition combustion process. The combustion product was single phase and composed of aggregates of nanocrystals of sizes in the range 20-50 nm. Ba2TmSbO6 crystallized in cubic perovskite structure with lattice parameter, a = 8.4101 Å. The polycrystalline fluffy combustion product was sintered to high density (∼97%) at ∼1450 °C for 4 h. Resistivity of the sintered specimen was ∼5 MΩ/cm. The Ba2TmSbO6 has dielectric constant (?′) and dielectric loss (tan δ) of 17 and ∼10−4 at 5 MHz; the new material would probably be developed as a low-loss dielectric material.  相似文献   
6.
Nanocrystalline Ba2NdSbO6, a complex cubic perovskite metal oxide, powders were synthesized by a self-sustained combustion method employing citric acid. The product was characterized by X-ray diffraction, differential thermal analysis, thermogravimetric analysis, Fourier transform infrared spectroscopy, transmission electron microscopy and scanning electron microscopy. The as-prepared powders were single phase Ba2NdSbO6 and a mixture of polycrystalline spheroidal particles and single crystalline nanorods. The Ba2NdSbO6 sample sintered at 1500°C for 4 h has high density (∼ 95% of theoretical density). Sintered nanocrystalline Ba2NdSbO6 had a dielectric constant of ∼ 21; and dielectric loss = 8 × 10−3 at 5 MHz.  相似文献   
7.
(Ca2Mg3)(X1.75Sb0.25)TiO12 [X = Nb and Ta] ceramics are prepared through the conventional solid-state route. The samples are calcined at 1,100 and 1,180 °C, and are sintered at 1,250 and 1,375 °C. The substitution of Sb decreases the calcination and sintering temperatures of pure (Ca2Mg3)(Nb/Ta)2TiO12. The structure of the samples is analyzed using X-ray diffraction method. The microstructure of the sintered pellet is studied using scanning electron microscopy. The dielectric properties such as dielectric constant (εr), quality factor (Quxf) and temperature coefficient of resonant frequency (τf) are measured in the microwave frequency region. By Sb substitution, thermal stability is achieved, with the increase in dielectric constant, without much change in the quality factor. The materials have intense emission lines in the wavelength region 500–700 nm. The compositions have good microwave dielectric properties and photoluminescence and hence are suitable for dielectric resonator and ceramic laser applications.  相似文献   
8.
The percolation behavior of the normal-state resistivity and superconductivity of the YBa2Cu3O7–Ba2GdNbO6 composite system were studied by X-ray diffraction and temperature-resistivity measurements. No detectable chemical reaction was observed between the YBa2Cu3O7– superconductor and the ceramic insulator Ba2GdNbO6, even after severe heat treatment above 950°C. The normal-state and superconducting percolation threshold values were found to be 17 vol.% and 30 vol.% of YBa2Cu3O7– respectively in the YBa2Cu3O7–-Ba2GdNbO6 composite system. The values obtained for the critical exponents describing the normal-state pecolation behavior of the system matched fairly well with the theoretically expected values for an ideal metal-insulator composite system.  相似文献   
9.
Nanocrystalline barium titanate has been synthesized through a modified combustion process in a single step for the first time. The as-prepared barium titanate powder is cubic perovskite with lattice constant a = 4.018 Å. The phase purity of the nanopowder was examined using thermo gravimetric analysis, differential thermal analysis and Fourier transform infrared spectroscopy. Transmission electron microscopic investigations have shown that the particle size of the as-prepared powder is in the range 20–40 nm. The agglomerate size distribution of the as-prepared powder was studied using atomic force microscopy. The nanoparticles of barium titanate were sintered to 97% of the theoretical density at a temperature of 1350 °C for 3 h. The microstructure of the sintered surface was examined using scanning electron microscopy. The dielectric constant and loss factor of the sintered pellets at 1 MHz measured at room temperature were 1223 and 3.5 × 10? 3 respectively.  相似文献   
10.
Ba8(Mg1−xZnx)Nb6O24 (x=0, 0.2, 0.4, 0.6, 0.8 and 1) ceramics were prepared through the conventional solid-state route. The materials were calcined at 1250 °C and sintered at 1375–1425 °C. The structure of the system was analyzed using X-ray diffraction and vibrational spectroscopic studies. The microstructure of the sintered pellet was analyzed using scanning electron microscopy. The dielectric constant (εr), temperature coefficient of resonant frequency (τf) and the unloaded quality factor (Qu) were measured in the microwave frequency region. The τf values of the compositions were reduced by varying the value of x from 0 to 1. The dielectric responses to frequency were also studied in the radio frequency region. The compositions have good microwave dielectric properties and hence are suitable for dielectric resonator applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号