首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
建筑科学   1篇
原子能技术   3篇
  2019年   2篇
  2018年   1篇
  2004年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
本通过一段城市建设过程重申广场概念的明晰性,阐述城市广场规划设计依据和评判标准均源于城市生活需要和城市形态结构。  相似文献   
2.
A diamond-like carbon circular target is proposed to improve γ-ray emission and pair production with a laser intensity of 8×1022 Wcm−2 by using 2D particle-in-cell simulations with quantum electrodynamics. It is found that the circular target can enhance the density of γ-photons significantly more than a plane target, when two colliding circularly polarized lasers irradiate the target. By multi-laser irradiating the circular target, the optical trap of lasers can prevent the high energy electrons accelerated by laser radiation pressure from escaping. Hence, γ-photons with a high density of beyond 5000nc are obtained through nonlinear Compton backscattering. Meanwhile, 2.7×1011 positrons with an average energy of 230 MeV are achieved via the multiphoton Breit–Wheeler process. Such an ultrabright γ-ray source and dense positron source can be useful in many applications. The optimal target radius and laser mismatching deviation parameters are also discussed in detail.  相似文献   
3.
The use of a novel double-cone funnel target with high density layers (HDL) to collimate and focus electrons is investigated by two-dimensional particle-in-cell simulations. The proposed scheme can guide, collimate and focus electron beams to smaller sizes. The collimation reasons are analyzed by the quasi-static magnetic fields generation inside the beam collimator with HDL. It is found that the energy conversion efficiency is increased by a factor of 2.2 in this new scheme in comparison with the that without HDL. Such a target structure has potential for design flexibility and prevents inefficiencies in important applications such as fast ignition, etc.  相似文献   
4.
A special method is proposed of a laser-induced cavity pressure acceleration scheme for collimating, accelerating and guiding protons, using a single-cone target with a beam collimator through a target normal sheath acceleration mechanism. In addition, the problems involved are studied by using two-dimensional particle-in-cell simulations. The results show that the proton beam can be collimated, accelerated and guided effectively through this type of target. Theoretically, a formula is derived for the combined electric field of accelerating protons. Compared with a proton beam without a beam collimator, the proton beam density and cut-off energy of protons in the type II are increased by 3.3 times and 10% respectively. Detailed analysis shows that the enhancement is mainly due to the compact and strong sheath electrostatic field, and that the beam collimator plays a role in focusing energy. In addition, the simulation results show that the divergence angle of the proton beam in type II is less than 1.67 times that of type I. The more prominent point is that the proton number of type II is 2.2 times higher than that of type I. This kind of target has important applications in many fields, such as fast ion ignition in inertial fusion, high energy physics and proton therapy.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号