首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
化学工业   7篇
建筑科学   7篇
一般工业技术   1篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
2.
This paper attempted to show the application of particle swarm optimization in the prediction of the compressive strength of cement sandy soil from the curing period, porosity of sample and percentage of cement. The results of the study show that the unconfined compressive strength of the cement stabilized sandy soil increases with an increasing cement content curing time period. Moreover the compressive strength decreases with an increasing porosity. The compressive strength improvement due to cement treatment has a larger increase in samples with less porosity. In addition, particle swarm optimization algorithm is and accurate technique in estimation of compressive strength of cement stabilized sandy soil. In order to compare of existing correlations, a total number of 100 unconfined compressive tests and 15 scanning electron microscope tests have been conducted on cemented Babolsar sand. It can be concluded that compared to existing correlations models, particle swarm optimization algorithm models give more reliable prediction about compressive strength of cement satblized sandy soil. Moreover, the sensitivity analysis of the polynomial model shows that cement content and porosity have significant impact on predicting unconfined compressive strength.  相似文献   
3.
The design of high-rise buildings often necessitates ground excavation, where buildings are in close proximity to the construction, thus there is a potential for damage to these structures. This paper studies an efficient user-friendly framework for dealing with uncertainties in a deep excavation in layers of cemented coarse grained soil located in Tehran, Iran by non-deterministic Random Set (RS) method. In order to enhance the acceptability of the method among engineers, a pertinent code was written in FISH language of FLAC2D software which enables the designers to run all simulations simultaneously, without cumbersome procedure of changing input variables in every individual analysis. This could drastically decrease the computational effort and cost imposed to the project, which is of great importance especially to the owners. The results are presented in terms of probability of occurrence and most likely values of the horizontal displacement at top of the wall at every stage of construction. Moreover, a methodology for assessing the credibility of the uncertainty model is presented using a quality indicator. It was concluded that performing RS analysis before the beginning of every stage could cause great economical savings, while improving the safety of the project.  相似文献   
4.
Bulletin of Engineering Geology and the Environment - In recent years, the use of helical piles as a deep foundation option for structures has increased dramatically because they offer definite...  相似文献   
5.
Recent researchers have discovered microtremor applications for evaluating the liquefaction potential. Microtremor measurement is a fast, applicable and cost-effective method with extensive applications. In the present research the liquefaction potential has been reviewed by utilization of microtremor measurement results in Babol city. For this purpose microtremor measurements were performed at 60 measurement stations and the data were analyzed by suing Nakmaura’s method. By using the fundamental frequency and amplification factor, the value of vulnerability index (K g ) was calculated and the liquefaction potential has been evaluated. To control the accuracy of this method, its output has been compared with the results of Seed and Idriss [1] method in 30 excavated boreholes within the study area. Also, the results obtained by the artificial neural network (ANN) were compared with microtremor measurement. Regarding the results of these three methods, it was concluded that the threshold value of liquefaction potential is K g = 5. On the basis of the analysis performed in this research it is concluded that microtremors have the capability of assessing the liquefaction potential with desirable accuracy.  相似文献   
6.
In this study, a series of unconfined compression tests have been performed to determine the effect of polyvinyl alcohol (PVA) fiber inclusion on deformation characteristics of cemented sand. The cement contents were 2, 4, and 6% by weight of the dry sand and samples were cured for 7 days. PVA fibers with a length of 12 mm and a diameter of 0.1 mm were added to sand-cement mixtures at a weight ratio of 0.0%, 0.3%, 0.6% and 1% (dry wt.). The compression stress-axial strain, secant modulus of elasticity (E50), tangent modulus of elasticity (Etan), failure mode, energy absorption capacity (EA), energy base index, strain base index, deformability index and axial strain at peak strength of the samples were described. Tests results show that addition of cement to sand increased stiffness and unconfined compression strength (UCS), and leading to a brittle behavior. Moreover, addition of PVA fibers to cemented sand increased the UCS and axial strain at peak strength and increased softening stress after the maximum strength. In addition, the fiber inclusion increases the energy absorption capacity and decreases the secant modulus of elasticity.  相似文献   
7.
Studying the piled raft behavior has been the subject of many types of research in the field of geotechnical engineering. Several studies have been conducted to understand the behavior of these types of foundations, which are often used for uniform loading on the raft and piles with the same length, while generally the transition load from the upper structure to the foundation is non-uniform and the choice of uniform length for piles in the above model will not be optimally economic and practical. The most common method in identifying the behavior of piled rafts is the use of theoretical relationships and software analyses. More precise identification of this type of foundation behavior can be very difficult due to several influential parameters and interaction of set behavior, and it will be done by doing time-consuming computer analyses or costly full-scale physical modeling. In the meantime, the technique of artificial neural networks can be used to achieve this goal with minimum time consumption, in which data from physical and numerical modeling can be used for network learning. One of the advantages of this method is the speed and simplicity of using it. In this paper, a model is presented based on multi-layer perceptron artificial neural network. In this model pile diameter, pile length, and pile spacing is considered as an input parameter that can be used to estimate maximum settlement, maximum differential settlement, and maximum raft moment. By this model, we can create an extensive domain of results for optimum system selection in the desired piled raft foundation. Results of neural network indicate its proper ability in identifying the piled raft behavior. The presented procedure provides an interesting solution and economically enhancing the design of the piled raft foundation system. This innovative design method reduces the time spent on software analyses.  相似文献   
8.
To evaluate the behavior of cemented clay treated reinforced with copper sludge, 63 ultrasonic pulse velocity tests were conducted. The copper sludge content, curing period and moisture content were all varied so that the behavior of the sample could be examined. The cement content was 11% by weight clay. The copper sludge contents were 0, 5, 10, 15, 25, 30 and 35% by weight of the cement and samples were cured for 7, 28, and 60 days. The results of this study can be used for estimating of the impacts of these variables on mechanical properties of cemented clay soil treated with copper sludge. The results of this study indicates that at early age of curing time inclusion of copper sludge decreases the ultrasonic pulse velocity. The ultrasonic pulse velocity of samples at 7 and 28 days decreases by increasing copper sludge content. The ultrasonic pulse velocity of sample on the wet side is higher than wet side of the dry unit weight-moisture content curve. Moreover an optimum percentage for the copper sludge (%15) in which the behavior of cemented clay improves significantly.  相似文献   
9.
In this research, a series of laboratory tests have been performed to investigate the effects of cement and polypropylene (PP) fiber on the triaxial behavior of sand. The cement contents were 0 and 5% by weight of the dry sand. Fiber length and diameter were 18 and 0.023 mm, respectively, were added at 0 and 0.6% by weight of dry sand–cement. Triaxial compression tests were performed at confining pressures of 0.1, 0.25, 0.5, and 1 MPa. The results of the study indicate that the inclusion of PP fiber increases the shear strength and the peak axial strain. The elastic modulus of specimen decreased with increase in fiber content and increased with the increase in cement content. Moreover, the initial stiffness and peak strength increased by increasing cement content.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号