首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   23篇
  国内免费   92篇
综合类   15篇
化学工业   6篇
建筑科学   107篇
矿业工程   64篇
能源动力   4篇
轻工业   1篇
水利工程   1篇
石油天然气   5篇
自动化技术   1篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   5篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   6篇
  2014年   12篇
  2013年   2篇
  2012年   5篇
  2011年   9篇
  2010年   23篇
  2009年   8篇
  2008年   19篇
  2007年   11篇
  2006年   7篇
  2005年   12篇
  2004年   13篇
  2003年   10篇
  2002年   9篇
  2001年   1篇
  2000年   3篇
  1999年   9篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   4篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
排序方式: 共有204条查询结果,搜索用时 31 毫秒
1.
近年来钻屑法作为预测煤矿冲击地压发生的重要手段,已在我国广泛使用。但由于理论研究的深度尚不够,实际应用中还存在一些问题。例如,煤体的钻粉量为多少才会发生冲击地压,往往难以确定。目前国内外确定临界钻粉量的方法是在已发生冲击地压的煤层中实际测得的临界钻粉量,用以指导其它煤层冲击地压的预报,显然是不够的。  相似文献   
2.
3.
为了有效利用与回收直接排放的大量抽放瓦斯,提出了利用水合物技术处理与储运的新方法,根据气体成分确立了水合物生成的温度与压力条件,通过对气体进行初始压力为9.5 MPa的定容法实验,研究了含表面活性剂下水合物生成过程中温度-压力与CH4转化率的变化规律。实验结果表明,水合反应的进行应保持一定的反应驱动力,根据不同温度下反应驱动力进而确定最佳反应条件,同时反应过程中CH4能被有效提取,但要进行高效生产,应进行多级水合分离技术以提高产率。  相似文献   
4.
钙芒硝盐岩溶解渗透力学特性研究   总被引:7,自引:9,他引:7  
溶解是盐类矿物的基本特性,渗透是流体在溶质浓度梯度、压力梯度及二者共同作用下经过多孔介质的运动。由于矿物组分溶解特性的差异,在一定渗透压力作用下,钙芒硝盐岩体内会产生溶解渗透交互促进作用,从而由低渗透介质变为高渗透的多孔介质,其渗透及力学特性受其矿物组分硫酸钠溶解程度的影响极大,这种特性称之为溶解渗透力学特性。实验结果表明,钙芒硝盐岩的渗透率为溶解渗透时间及渗透压的函数。在围压为2.0MPa、初始渗透压为1.0MPa的溶解渗透作用下,获得不同溶解渗透时间时渗透率与渗透压的关系。由于溶解渗透使得矿物组成及其结构的变化,钙芒硝盐岩在溶解渗透前后三轴力学特性差异也很大,在2.0MPa围压的作用条件下,溶解渗透49h之后,钙芒硝盐岩的强度由未溶解渗透时的46.53MPa,降低为溶解渗透后的11.42MPa:与此同时,弹性模量也由43.700MPa降低为0.834MPa。因此,溶解渗透对钙芒硝盐岩的力学特性有着极大的影响。  相似文献   
5.
盐岩蠕变特性的试验研究   总被引:3,自引:9,他引:3  
盐岩蠕变特性会因矿物组成成分、加载应力水平的不同而异。通过对钙芒硝盐岩及氯化钠盐岩在不同载荷作用下多于100 d的蠕变试验研究发现:(1)在相同载荷7.0 MPa作用下,不同矿物成分盐岩的蠕变特性不同,钙芒硝盐岩的蠕变速率仅为氯化钠盐岩的3.67%,分别为8.72×10-6和2.38×10-4 d-1,二者有2个数量级之差;(2)在不同载荷作用下,盐岩的蠕变特性不同。在7.0 MPa载荷作用下,盐岩试件的蠕变速率为2.38×10-4/d;而在4.0 MPa载荷作用下,试件的蠕变速率为3.77×10-5 d-1,仅为前者的15.87%,表现出盐岩蠕变明显的应力效应特征;(3)在7.0和12.0 MPa两种不同载荷作用下,钙芒硝盐岩的蠕变率分别为8.72×10-6 d-1和1.12×10-5 d-1,后者为前者的1.28倍,与变形量比例相一致。最后,通过分析建立盐岩瞬态蠕变和稳态蠕变的耦合本构方程,该方程拟合曲线与试验结果曲线吻合较好。所获试验结果及本构方程可对层状盐岩矿床内建造油气储库的稳定性分析提供一定的参考依据。  相似文献   
6.
600 ℃内高温状态花岗岩遇水冷却后力学特性试验研究   总被引:6,自引:1,他引:6  
 通过对600 ℃内高温状态花岗岩遇水冷却后的力学特性试验研究及花岗岩体遇水热破裂劣化机制的探讨,发现高温状态花岗岩遇水冷却过程中,由于岩体内温度急剧变化,岩体内产生热破裂或热冲击现象,岩体力学性能劣化,从而导致超声波速、单轴抗压强度、抗拉强度及弹性模量随温度逐渐减小。具体表现为:(1) 高温状态花岗岩遇水冷却后超声波速随着经历温度的升高呈负指数函数关系降低;(2) 花岗岩经过高温遇水冷却处理,峰值应力和峰值应变及其单轴抗压强度都受到很大影响;(3) 高温状态遇水冷却处理对花岗岩的抗拉强度影响明显,抗拉强度随温度的变化规律符合负指数函数关系;(4) 高温状态花岗岩遇水冷却后其弹性模量随温度的升高呈负对数规律减小。  相似文献   
7.
 热力耦合作用下岩石的微观结构的变化是引起宏观力学变化的主要原因,从热力耦合作用下花岗岩的流变机制研究出发,建立热力耦合作用下花岗岩的流变模型,从而推导流变本构方程是一种可行的方法。通过热力耦合作用下花岗岩的流变机制研究可知:(1) 花岗岩是一种由多种成分构成的具有多晶复合介质特点的脆性坚硬岩石,具有很大的非均质性,内部微观结构可分为晶粒、晶粒边界、晶间胶结物及晶间孔隙,这样的组分和结构将决定花岗岩在热力耦合作用下的流变特性。(2) 热力耦合作用下花岗岩流变现象主要是热力耦合作用下岩体内晶间胶结物及晶粒内部产生的位错及微破裂过程,即温度产生的热破裂和应力产生损伤破裂的复合破裂过程,微观结构上的变化使得标志着热力耦合作用下宏观力学特性的力学参数成为温度的函数。因此,将岩石现象流变学与物理流变学结合起来,提出热力耦合作用下岩石热黏弹塑性流变元件力学元件,在广义西原模型的基础上建立热力耦合作用下花岗岩流变模型,推导出可描述150 MPa及600 ℃以内花岗岩的流变本构方程,用试验结果验证了其适用性和合理性。热力耦合作用下花岗岩流变模型的本构方程的建立为高温岩体地热开发钻井施工及其稳定性研究提供了依据。  相似文献   
8.
高温高压条件下花岗岩切削破碎试验研究   总被引:2,自引:1,他引:2  
 为了达到最接近实际工程的试验效果,采用中国矿业大学的“20 MN 伺服控制高温高压岩体三轴试验机”,设计了精确的加压和旋转系统,操作控制比较方便,测量数据准确。利用大尺寸(f 200 mm×400 mm)花岗岩试样和工程钻头(f 30 mm的PDC钻头),使试验条件更加接近实际工程情况,开创了该类大试样试验的先河。通过正交试验研究花岗岩在高温高压状态下的切削破碎规律,得出以下结论:(1) 高围压状态(100 MPa)下,随着温度升高,花岗岩的可切削性逐渐增强,在超过一定的钻压时,切削速度随着温度的升高而明显增大,在755 N钻压下,300 ℃的切削速度比室温时增大30%~50%;(2) 高围压状态(100 MPa)下,随着温度升高,单位破岩能耗明显降低,在钻压为755 N时,300 ℃时的单位破岩能耗比室温时降低20%~30%;(3) 在高温高压环境下,切削速度随着钻压或转速的增大而增大;单位破岩能耗随着转速的增大而增大,随着钻压的增大而减小,与室温无围压状态下的切削破碎规律基本一致;(4) 由于花岗岩在此温压范围内属于渐进破坏,抗压强度下降缓慢,如果钻压太低则切削速度和单位破岩能耗受温度影响很小,为了在高温下取得对花岗岩的良好切削效果,钻压需要超过一定的值。  相似文献   
9.
冯子军  赵阳升 《煤炭学报》2015,40(1):103-108
利用μCT225FCB型高精度工业CT试验机进行了不同温度下褐煤、气煤细观结构演化的显微CT试验,发现煤在低温阶段(<300 ℃),由于煤中水分和自由气体的散失而产生大量裂纹;在高温阶段(>300 ℃),有机质的热解导致煤中大量孔隙裂隙的形成,煤的这种产生孔隙裂隙的方式与无机岩石(如花岗岩、砂岩等)明显不同,称这种因热解作用导致煤等一类富含有机质的岩石发生破坏的现象为热解破裂。与无机岩石的热破裂过程相比,煤的热解破裂在破裂机理、裂纹起始位置、裂纹形态方面具有显著的独特性。煤热解破裂过程中,当温度低于300 ℃时因煤中自由水和自由气体的散失而形成以细长裂纹为主的孔隙裂隙系统;当温度高于300 ℃时因煤中热解产物的逸出而形成以圆形或椭圆形孔洞为主的孔隙裂隙系统。300 ℃前新生裂隙不仅起始于煤中的硬质颗粒之间,更普遍的起始于有机质中;300 ℃后孔隙裂隙的形成主要起始于有机质内。  相似文献   
10.
长焰煤热解过程中孔隙结构演化特征研究   总被引:1,自引:0,他引:1  
随着煤热解温度的升高,煤孔隙结构和数量发生剧烈变化。为研究其变化规律,以长焰煤为研究对象,应用压汞法分别对300℃~600℃常规热解和600℃高温蒸气热解固体产物的孔隙结构参数进行测定和分析,计算不同热解温度下的孔隙分形维数,详细比较2种不同的热解方式下固体产物的孔隙特性。研究结果表明:(1)常规热解条件下,总孔隙体积和孔隙率随温度的演化表现为:黑岱沟煤先减小后增大,温度高于500℃后增长的速率较大,而子长煤先增大后减小再增大,增长速率最大的区段是300℃~400℃;比表面积随温度的演化表现为:黑岱沟煤一直增加,而子长煤持续减小。(2)常规热解条件下,长焰煤孔隙体积分布以中孔和大孔为主,温度超过300℃时,大孔占绝大多数;而比表面积的分布以微孔和过渡孔为主。(3)高温蒸气热解条件下,长焰煤热解固态产物的孔隙体积分布以中孔和大孔为主,大孔占主导地位,子长煤表现更为明显,大孔比例达99.91%;孔隙比表面积分布表现为:黑岱沟煤以微孔和过渡孔为主,而子长煤以大孔为主。(4)高温蒸气热解固体产物表现出更为优良的渗透性能,与注入惰性气体相比,注入高温蒸气是煤层原位热解工艺实施的最佳方法。在煤层原位热解工艺实施过程中,该研究可为煤体孔隙结构随温度变化问题提供科学依据和理论指导。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号