首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   0篇
化学工业   1篇
能源动力   60篇
轻工业   1篇
无线电   2篇
自动化技术   2篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2015年   4篇
  2014年   5篇
  2013年   1篇
  2012年   8篇
  2011年   8篇
  2010年   13篇
  2009年   9篇
  2008年   1篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  1998年   1篇
  1994年   1篇
排序方式: 共有66条查询结果,搜索用时 0 毫秒
1.
Technological learning in bioenergy systems   总被引:1,自引:0,他引:1  
The main goal of this article is to determine whether cost reductions in different bioenergy systems can be quantified using the experience curve approach, and how specific issues (arising from the complexity of biomass energy systems) can be addressed. This is pursued by case studies on biofuelled combined heat and power (CHP) plants in Sweden, global development of fluidized bed boilers and Danish biogas plants. As secondary goal, the aim is to identify learning mechanisms behind technology development and cost reduction for the biomass energy systems investigated. The case studies reveal large difficulties to devise empirical experience curves for investment costs of biomass-fuelled power plants. To some extent, this is due to lack of (detailed) data. The main reason, however, are varying plant costs due to differences in scale, fuel type, plant layout, region etc. For fluidized bed boiler plants built on a global level, progress ratios (PRs) for the price of entire plants lies approximately between 90–93% (which is typical for large plant-like technologies). The costs for the boiler section alone was found to decline much faster. The experience curve approach delivers better results, when the production costs of the final energy carrier are analyzed. Electricity from biofuelled CHP-plants yields PRs of 91–92%, i.e. an 8–9% reduction of electricity production costs with each cumulative doubling of electricity production. The experience curve for biogas production displays a PR of 85% from 1984 to the beginning of 1990, and then levels to approximately 100% until 2002. For technologies developed on a local level (e.g. biogas plants), learning-by-using and learning-by-interacting are important learning mechanism, while for CHP plants utilizing fluidized bed boilers, upscaling is probably one of the main mechanisms behind cost reductions.  相似文献   
2.
3.
Large-scale deployment of carbon capture and storage needs a dedicated infrastructure. Planning and designing of this infrastructure require incorporation of both temporal and spatial aspects. In this study, a toolbox has been developed that integrates ArcGIS, a geographical information system with spatial and routing functions, and MARKAL, an energy bottom-up model based on linear optimization. Application of this toolbox led to blueprints of a CO2 infrastructure in the Netherlands. The results show that in a scenario with 20% and 50% CO2 emissions reduction targets compared to their 1990 level in respectively 2020 and 2050, an infrastructure of around 600 km of CO2 trunklines may need to be built before 2020. Investment costs for the pipeline construction and the storage site development amount to around 720 m€ and 340 m€, respectively. The results also show the implication of policy choices such as allowing or prohibiting CO2 storage onshore on CO2 Capture and Storage (CCS) and infrastructure development. This paper illustrates how the ArcGIS/MARKAL-based toolbox can provide insights into a CCS infrastructure development, and support policy makers by giving concrete blueprints over time with respect to scale, pipeline trajectories, and deployment of individual storage sites.  相似文献   
4.
    
As energy crop production on European croplands expands, driven by accelerating consumption of bioenergy, there is a pressing need to evaluate the environmental impacts associated with this production. The present study considers on‐going yield increases as a means of boosting agricultural output which results in a limited need to convert nature areas and grasslands to additional cropland. For nine land‐use variants, the study evaluates cumulative greenhouse gas emissions, net organic carbon fluxes from the soil, and abated emissions achieved by replacing fossil fuels for transport with biofuels. The main finding is that, in European agriculture, it is possible to combine large‐scale biomass production with food production sustained at current levels, with limited direct or indirect land‐use changes and while accomplishing significant net greenhouse gas mitigation. Maintaining the current (business as usual) agricultural system results in 4.9 GtCO2‐eq. of cumulative emissions by 2030. Intensified food production and energy crop production on freed cropland combined with mitigation measure implementation significantly reduces cumulative emissions for the annual crop groups of oil, starch and sugarbeet to 1.9, 1.5 and 2.1 GtCO2‐eq., respectively. By 2030, perennial energy crop production can mitigate cumulative emissions to a large extent, reaching negative emissions (i.e. net sequestration) for grass and wood crops of –3.3 and –4.5 GtCO2‐eq., respectively. For the variants compared to the baseline, nitrous oxide emissions will increase modestly due to higher fertilizer‐application rates, though at improved efficiencies per unit crop quantity produced. Emission mitigation results partly from the temporary increase in SOC sequestration though mainly from replacement of fossil resources by biomass resources. The results indicate that research and policy efforts aimed at further increasing productivity can raise the output from existing European croplands while being able to reduce or mitigate emissions significantly.  相似文献   
5.
    
Transition to a bio‐based economy will create new demand for biomass, e.g. the increasing use of bioenergy, but the impacts on existing markets are unclear. Furthermore, there is a growing public concern on the sustainability of biomass. This study proposes a methodological framework for mapping national biomass flows based on domestic production‐consumption and cross‐border trade, and respective share of sustainably‐certified biomass. A case study was performed on the Netherlands for 2010‐2011, focusing on three categories: (i) woody biomass, (ii) oils and fats, and (iii) carbohydrates. Between 2010‐2011 few major shifts were found, besides the increasing biofuel production. The share of sustainably‐certified feedstock is growing in many categories. Woody biomass used for energy amounted to 3.45 MT, including 1.3 MT imported wood pellets ( >85% certified). About 0.6 MT of oils and fats and 1.2 MT (estimation) of carbohydrates were used for biofuel production. It is assumed that only certified materials were used for biofuel production. For non‐energy purpose, more than 50% of woody biomass used was either certified or derived from recycled streams. Certified oils has entered the Dutch food sector since 2011, accounted for 7% of total vegetable oils consumption. It is expected that carbohydrates will also be certified in the near future. Methodological challenges encountered are: inconsistency in data definitions, lack of coherent cross‐sectorial reporting systems, low reliability of bilateral trade statistics, lack of transparency in biomass supply chains, and disparity in sustainability requirements. The methodology may be expanded for future projection in different scenarios. © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd  相似文献   
6.
    
The European wood pellet market is booming: concerns about climate change and renewable energy targets are predominant drivers. The aim of this analysis is to compare typical wood pellet chains from the purchase of the feedstock from sawmills to the conversion into heat or electricity. Cost structures, primary energy inputs and avoided greenhouse gas (GHG) emissions are reviewed. Three cases are defined: pellets for district heating (DH) in Sweden (replacing heavy fuel oil); bagged pellets for residential heating in Italy (natural gas); and Canadian pellets for electricity production in the Netherlands (coal). Supply may cost €110–€170 per tonne of delivered pellets, with the main cost factors being feedstock collection, drying and long‐distance ocean transportation (for Canadian pellets only). Largest avoided emissions are for power production (1937 kg CO2eq/tonne of pellets), followed by district heating (1483 kg). In relative terms, the GHG reduction varies from 81% for residential heating (with pre‐dried feedstock) to 97% for DH. Based on a wood‐pellet consumption of 8.2 million tonnes, the EU27 plus Norway and Switzerland avoided about 12.6 million tonnes of CO2 emissions in 2008. Concluding, wood pellets can achieve substantial GHG savings, especially when substituting coal for power production. However, wood pellets are relatively expensive, especially compared to coal. Only in the case of high oil prices, can the substitution of heating oil for DH be commercially viable. In most other cases, substitution is only possible with financial support from national governments, for example, feed‐in tariffs or carbon taxes. The commercial markets for CO2 emission rights may cover some costs, but their impact is still limited. Copyright © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd  相似文献   
7.
The energy potential for energy crops and biomass residues in the Netherlands is assessed. The analysis explores the possible use of land for biomass production in the future. Various government memorandums and analyses of the expected future land use in various sectors have served as the basis for the assessment of the supply of and the demand for land in the future. In this study the potential supply of agricultural land is based on expected productivity increments in agriculture and assumptions with respect to the future demand for agricultural products. Various future claims for infrastructure, forestry, urban areas and nature are subtracted from the expected supply. The net projected supply of land ranges from zero to 52 000 ha in 2000 to 110 000-250 000 ha in 2015. The supply of agricultural land depends however on a number of supra-national factors, such as the European agricultural policy, world market developments and the agricultural production in the countries in Eastern Europe. Uncertainties remain, therefore, and the projected supply of agricultural land should be considered as a possible scenario based on current trends. If the calculated land potential is used for energy crops like miscanthus and short rotation coppice, this land could contribute 0-10 PJ in 2000 and 27-59 PJ in 2015. Secondary biomass yields, such as those from forestry, agricultural residues, wood from prunings, etc., could contribute a further 34 PJ in 2000, decreasing to approximately 28 PJ in 2015. Taken together these potentials could satisfy 1-1.5% of the energy requirements of the Netherlands in 2000 and 1.5-2.5% in 2015, provided that energy farming is an economically feasible activity for farmers.  相似文献   
8.
    
Biomass feedstock can be used for the production of biofuels or biobased chemicals to reduce anthropogenic greenhouse gas (GHG) emissions. Earlier studies about the techno‐economic performance of biofuel or biobased chemical production varied in biomass feedstock, conversion process, and other techno‐economic assumptions. This made a fair comparison between different industrial processing pathways difficult. The aim of this study is to quantify uniformly the factory‐gate production costs and the GHG emission intensity of biobased ethanol, ethylene, 1,3‐propanediol (PDO), and succinic acid, and to compare them with each other and their respective fossil equivalent products. Brazilian sugarcane and eucalyptus are used as biomass feedstock in this study. A uniform approach is applied to determine the production costs and GHG emission intensity of biobased products, taking into account feedstock supply, biobased product yield, capital investment, energy, labor, maintenance, and processing inputs. Economic performance and net avoided GHG emissions of biobased chemicals depend on various uncertain factors, so this study pays particular attention to uncertainty by means of a Monte Carlo analysis. A sensitivity analysis is also performed. As there is uncertainty associated with the parameters used for biobased product yield, feedstock cost, fixed capital investment, industrial scale, and energy costs, the results are presented in ranges. The 60% confidence interval ranges of the biobased product production costs are 0.64–1.10 US$ kg−1 ethanol, 1.18–2.05 US$ kg−1 ethylene, 1.37–2.40 US$ kg−1 1,3‐PDO, and 1.91–2.57 US$ kg−1 succinic acid. The cost ranges of all biobased products partly or completely overlap with the ranges of the production costs of the fossil equivalent products. The results show that sugarcane‐based 1,3‐PDO and to a lesser extent succinic acid have the highest potential benefit. The ranges of GHG emission reduction are 1.29–2.16, 3.37–4.12, 2.54–5.91, and 0.47–5.22 CO2eq kg−1 biobased product for ethanol, ethylene, 1,3‐PDO, and succinic acid respectively. Considering the potential GHG emission reduction and profit per hectare, the pathways using sugarcane score are generally better than eucalyptus feedstock due to the high yield of sugarcane in Brazil. Overall, it was not possible to choose a clear winner, (a) because the best performing biobased product strongly depends on the chosen metric, and (b) because of the large ranges found, especially for PDO and succinic acid, independent of the chosen metric. To quantify the performance better, more data are required regarding the biobased product yield, equipment costs, and energy consumption of biobased industrial pathways, but also about the production costs and GHG emission intensity of fossil‐equivalent products. © 2019 The Authors. Biofuels, Bioproducts, and Biorefining published by Society of Chemical Industry and John Wiley & Sons, Ltd.  相似文献   
9.
    
Brazil is one of the largest emitters of greenhouse gases in the world with most of its emissions coming from the land use, land use change, and forestry (LULUCF) sector. New commitments have been set by the Paris Agreement and are reflected in the country's Nationally Determined Contribution (NDC). The Brazilian NDC has three main pillars to reduce emissions: increasing the share of biomass in the total primary energy supply to 18%, reducing deforestation, and achieving 45% of renewable energy in the energy mix. It is important to enlarge the share of biomass in the Brazilian economy, but it is also important to assess the potential impacts on deforestation in order to set the right strategy eventually. This study is thus an effort to investigate the contributions of a biobased economy to reduce Brazilian emissions, considering the broader concept of the bioeconomy, using biomass for energy, chemicals, and materials. To satisfy the objectives of the project, especially those related to its interest in economy‐wide changes in feedstock (from fossil to biobased), computable general equilibrium modeling (CGE) was chosen as the basic methodology integrated with an economic input–output life cycle analysis (EIO‐LCA). Results show that the impacts of the bioeconomy scenarios are positive but not sufficiently high to reduce the estimated emissions drastically. Emissions by the energy sector produce the highest reductions (7.5%) but the 12% increase in the LULUCF sector offsets those reduction. © 2019 Society of Chemical Industry and John Wiley & Sons, Ltd  相似文献   
10.
The aim of this study is to show the impact of different assumptions and methodological choices on the life-cycle greenhouse gas (GHG) performance of biofuels by providing the results for different key parameters on a consistent basis. These include co-products allocation or system expansion, N2O emissions from crop cultivation, conversion systems and co-product applications and direct land-use change emissions. The results show that the GHG performance of biofuels varies depending on the method applied and the system boundaries selected. Key factors include selected allocation procedures and the location of production and related yields, reference land and soil N2O emissions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号