首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   1篇
化学工业   4篇
金属工艺   2篇
机械仪表   1篇
能源动力   1篇
轻工业   1篇
无线电   1篇
一般工业技术   10篇
自动化技术   2篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2015年   1篇
  2012年   1篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   1篇
  2006年   2篇
  2003年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有22条查询结果,搜索用时 0 毫秒
1.
We report amplified spontaneous emission (ASE) and optically pumped deep-blue-emitting distributed feedback (DFB) lasers based on a star-shaped oligofluorene truxene molecule. A low ASE threshold of 2.1 kW/cm2 at 439 nm was achieved. The material exhibits a high net gain of 38 cm?1 and also low optical loss coefficient of 3.5 cm?1. Second-order DFB lasers show tuning of the emission wavelength from 422 to 473 nm, and a minimum threshold density of 515 W/cm2. This is the broadest tuning range (51 nm) reported for organic deep-blue/blue lasing materials.  相似文献   
2.
Structural components that operate at high temperatures (for example, turbine blades) rely on thermally grown oxide (TGO), commonly alumina, for corrosion protection. Strains that develop in TGOs during operation can reduce the protectiveness of the TGO. However, the occurrence of growth strains in TGOs, and mechanisms that cause them, are poorly understood. It is accepted that compressive strains can develop as oxygen and metal atoms meet to form new growth within constrained oxide. More controversial is the experimental finding that large tensile stresses, close to 1 GPa, develop during isothermal growth conditions in alumina TGO formed on a FeCrAlY alloy. Using a novel technique based on synchrotron radiation, we have confirmed these previous results, and show that the tensile strain develops as the early oxide, (Fe,Cr,Al)(2)O(3), converts to alpha-Al2O3 during the growth process. This allows us to model the strain behaviour by including creep and this diffusion-controlled phase change.  相似文献   
3.
Mapping the myocardial fiber organization is important for assessing the electrical and mechanical properties of normal and diseased hearts. Current methods to determine the fiber organization have several limitations: histological sectioning mechanically distorts the tissue and is labor-intensive, while diffusion tensor imaging has low spatial resolution and requires expensive MRI scanners. Here, we utilized optical clearing, a fluorescent dye, and confocal microscopy to create three-dimensional reconstructions of the myocardial fiber organization of guinea pig and mouse hearts. We have optimized the staining and clearing procedure to allow for the nondestructive imaging of whole hearts with a thickness up to 3.5 mm. Myocardial fibers could clearly be identified at all depths in all preparations. We determined the change of fiber orientation across strips of guinea pig left ventricular wall. Our study confirms the qualitative result that there is a steady counterclockwise fiber rotation across the ventricular wall. Quantitatively, we found a total fiber rotation of 105.7+/-14.9 degrees (mean+/-standard error of the mean); this value lies within the range reported by previous studies. These results show that optical clearing, in combination with a fluorescent dye and confocal microscopy, is a practical and accurate method for determining myocardial fiber organization.  相似文献   
4.
The quantum mechanical investigations of fullerene C24, C26, C28 molecule conformers are performed in the framework of the point set group theory and semiempirical PM3 configuration interaction and the MNDO, AMI methods. The main criterion of stability of calculated fiillerene molecules we state the lowest total energy of various isomers and conformers that appears due to the Jahn-Teller distortion. The most stable occurs C24 (D6 symmetry) conformation with term1A1 and open shell C26 (D3h) conformation with term5A1.  相似文献   
5.
Microsystem Technologies - In this article, thermal imprint process for replication of high-quality microstructures on the surface of polymer is investigated. Vibrations has been previously...  相似文献   
6.
The retina and RPE cells are regularly exposed to chronic oxidative stress as a tissue with high metabolic demand and ROS generation. DJ-1 is a multifunctional protein in the retina and RPE that has been shown to protect cells from oxidative stress in several cell types robustly. Oxidation of DJ-1 cysteine (C) residues is important for its function under oxidative conditions. The present study was conducted to analyze the impact of DJ-1 expression changes and oxidation of its C residues on RPE function. Monolayers of the ARPE-19 cell line and primary human fetal RPE (hfRPE) cultures were infected with replication-deficient adenoviruses to investigate the effects of increased levels of DJ-1 in these monolayers. Adenoviruses carried the full-length human DJ-1 cDNA (hDJ) and mutant constructs of DJ-1, which had all or each of its three C residues individually mutated to serine (S). Alternatively, endogenous DJ-1 levels were decreased by transfection and transduction with shPARK7 lentivirus. These monolayers were then assayed under baseline and low oxidative stress conditions. The results were analyzed by immunofluorescence, Western blot, RT-PCR, mitochondrial membrane potential, and viability assays. We determined that decreased levels of endogenous DJ-1 levels resulted in increased levels of ROS. Furthermore, we observed morphological changes in the mitochondria structure of all the RPE monolayers transduced with all the DJ-1 constructs. The mitochondrial membrane potential of ARPE-19 monolayers overexpressing all DJ-1 constructs displayed a significant decrease, while hfRPE monolayers only displayed a significant decrease in their ΔΨm when overexpressing the C2S mutation. Viability significantly decreased in ARPE-19 cells transduced with the C53S construct. Our data suggest that the oxidation of C53 is crucial for regulating endogenous levels of ROS and viability in RPE cells.  相似文献   
7.
Singlet–singlet annihilation is studied in polyfluorene (PFO) films containing different fractions of β‐phase chains using time‐resolved fluorescence. On a timescale of >15 ps after excitation, the results are fitted well by a time‐independent annihilation rate, which indicates that annihilation is controlled by 3D exciton diffusion. A time‐dependent annihilation rate is observed during the first 15 ps in the glassy phase and in the β‐phase rich films, which can be explained by the slowdown of exciton diffusion after excitons reach low‐energy sites. The annihilation rate in the mixed‐phase films increases with increasing fraction of β‐phase present, indicating enhanced exciton diffusion. The observed trend agrees well with a model of fully dispersedβ‐phase chromophores in the surrounding glassy phase with the exciton diffusion described using the line‐dipole approximation for an exciton wavefunction extending over 2.5 nm. The results indicate that glassy andβ‐phase chromophores are intimately mixed rather than clustered or phase‐separated.  相似文献   
8.
9.
By use of a capillary electrophoretic method for anion analysis the anodic oxidation of thiosulfate, present in color photo bleach‐fix solutions, was investigated. In a specially constructed electrolysis cell with a cation‐exchange membrane separating the electrode chambers and with a carbon flow‐through three‐dimensional anode the two‐stage anodic oxidation of S2O32? anions was realized. In the first stage, S2O32? anions were oxidized to a maximal degree to an intermediate compound – tetrathionate (S4O62?) – then S4O62? anions were oxidized to the sulfate (SO42?), avoiding the decomposition of intermediate compounds and the formation of harmful sulfur compounds. © 2002 Society of Chemical Industry  相似文献   
10.
Abstract— High‐power red, green, and blue laser light sources made from vertically emitting arrays of intracavity doubled IR lasers is reported. The emitted infrared light from a monolithic array of large‐aperture vertical cavity lasers is converted into visible light using a PPLN doubling crystal in an external cavity. A volume Bragg grating provides simultaneous feedback for all emitters in the array and sets the laser wavelength. Increased diffraction losses for higher‐order modes result in quasi‐Gaussian beams with excellent conversion efficiency. Green 532‐nm lasers with more than 5.8‐W visible power have been demonstrated at a base temperature of 40°C. Blue 465‐nm lasers with 4.4‐W power at 40°C are unmatched in performance and wavelength when compared to competing GaN‐based edge emitters. Typical wall‐plug efficiencies are higher than 8%. We have measured single‐emitter operating lifetimes to be more than 28,000 hours. Red lasers based on highly strained InGaAs achieve record laser powers of 2.0W at 618 nm in the same form factor as the green and blue lasers. Red single‐emitter lifetimes of more than 10,000 hours have been attained. The technology described in this paper delivers on a full suite of cost efficient and reliable red, green, and blue lasers that meet the demands of the display markets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号