首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   4篇
化学工业   10篇
金属工艺   1篇
机械仪表   13篇
能源动力   7篇
轻工业   7篇
无线电   5篇
一般工业技术   10篇
冶金工业   2篇
自动化技术   9篇
  2023年   3篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   6篇
  2016年   5篇
  2015年   7篇
  2014年   5篇
  2013年   6篇
  2012年   3篇
  2011年   9篇
  2010年   3篇
  2009年   1篇
  2007年   2篇
  2005年   1篇
  2004年   2篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
1.
Direct methanol fuel cells (DMFCs) are potential candidates for portable backup power generation and auxiliary power units owing to their advantageous features, such as ease of fuel storage and delivery. Optimizing each component of a DMFC system is critical to improving the overall system performance and power density. This paper presents an active DMFC system model, in which a one-dimensional DMFC stack model is combined with major system components, including fuel and water tanks, liquid–gas separator, heat exchangers, pumps, and blowers. The model is implemented using a commercial flow-sheet simulator, ASPEN-HYSYS, and then applied to an active DMFC system to analyze the effects of the DMFC operating parameters and heat management. Special emphasis is placed on establishing active control strategies for the DMFC stack temperature, methanol crossover rate, and water recovery by optimizing the system components and operating conditions. Overall, this study helps identify innovative active DMFC system designs and configurations.  相似文献   
2.
Reducing methanol crossover from the anode to cathode in direct methanol fuel cells (DMFCs) is critical for attaining high cell performance and fuel utilization, particularly when highly concentrated methanol fuel is fed into DMFCs. In this study, we present a novel design of anode diffusion media (DM) wherein spatial variation of hydrophobicity along the through-plane direction is realized by special polytetrafluoroethylene (PTFE) coating procedure. According to the capillary transport theory for porous media, the anode DM design can significantly affect both methanol and water transport processes in DMFCs. To examine its influence, three different membrane-electrode assemblies are fabricated and tested for various methanol feed concentrations. Polarization curves show that cell performance at high methanol feed concentration conditions is greatly improved with the anode DM design with increasing hydrophobicity toward the anode catalyst layer. In addition, we investigate the influence of the wettability of the anode microporous layer (MPL) on cell performance and show that for DMFC operation at high methanol feed concentration, the hydrophilic anode MPL fabricated with an ionomer binder is more beneficial than conventional hydrophobic MPLs fabricated with PTFE. This paper highlights that controlling wetting characteristics of the anode DM and MPL is of paramount importance for mitigating methanol crossover in DMFCs.  相似文献   
3.
Sulfonated poly(ether sulfone)s containing a mixture of cis and trans mesonaphthobifluorene moiety were synthesized, and their properties were characterized. The mesonaphthobifluorene graphene moiety contained 6 phenyl rings and was conjugated together to form planar sheets of sp2-bonded carbon. Poly(arylene ether sulfone)s containing a mixture of cis and trans tetraphenyl ethylene units were synthesized by polycondensation, and converted into graphene by intramolecular Friedel–Craft cyclization with Lewis acid (FeCl3). The sulfonation was taken selectively on mesonaphthobifluorene units with concentrated sulfuric acid. The structural properties of the sulfonated polymers were investigated by 1H NMR spectroscopy. The membranes were studied with regard to ion exchange capacity (IEC), water uptake, and proton conductivity.  相似文献   
4.
A planar catlytic combustion gas sensor based on Pd/Pt catalyst supported on F-doped SnO2 nano-crystalline materials has been designed and fabricated for hydrogen detection. The sensor consists of platinum heaters on an alumina plate coated with a catalytic layer and compensating layer. This sensor exhibited better performance than that of the sensors employing sensing material of Pd/Pt catalyst on γ-Al2O3 and of Pd/Pt catalyst on nano-crystalline SnO2. The detection limit of the sensor at 370 °C is in the concentration range of 0.5–5% (v/v), with an excellent linearity of signal voltage to the hydrogen gas concentration.  相似文献   
5.
This paper proposes a single‐RF MIMO receiver that adopts a beam‐switching antenna (BSA) instead of a conventional array antenna. The beauty of the proposed single‐RF MIMO receiver with BSA is that it can be deployed in a very small physical space while achieving a full spatial multiplexing gain. Our analysis has revealed that the use of a BSA inevitably results in the spectrum spreading effect at the RF output, which in turn causes an SNR decrease and adjacent channel interference (ACI). Two novel receiver techniques are proposed to mitigate the issues of redundant sub‐band suppression and ACI avoidance. Numerical analysis results verify the performance improvement from the proposed receiver techniques.  相似文献   
6.
7.
Characteristics of Char-CO2 gasification were compared in the temperature range of 1,100–1,400 °C using a thermogravimetric analyzer (TGA) for petroleum coke, coal chars and mixed fuels (Petroleum coke/coal ratios: 0, 0.25, 0.5, 0.75, 1). The results showed that reaction time decreased with increasing gasification temperature, BET surface area and alkali index of coal. Mixed fuels composed of petroleum coke/coal exhibited reduced activation energies. Modified volumetric reaction model and shrinking core model might be suitably matched with experimental data depending on coal type and petroleum coke/coal ratio. Rate equations were suggested by selecting gas-solid reaction rate models for each sample that could simulate CO2 gasification behavior.  相似文献   
8.
The use of phenicol antibiotics in animals has increased. In recent years, it has been reported that the transferable gene mediates phenicol-oxazolidinone resistance. This study analyzed the prevalence and characteristics of phenicol-oxazolidinone resistance genes in Enterococcus faecalis and Enterococcus faecium isolated from food-producing animals and meat in Korea in 2018. Furthermore, for the first time, we reported the genome sequence of E. faecalis strain, which possesses the phenicol-oxazolidinone resistance gene on both the chromosome and plasmid. Among the 327 isolates, optrA, poxtA, and fexA genes were found in 15 (4.6%), 8 (2.5%), and 17 isolates (5.2%), respectively. Twenty E. faecalis strains carrying resistance genes belonged to eight sequence types (STs), and transferability was found in 17 isolates. The genome sequences revealed that resistant genes were present in the chromosome or plasmid, or both. In strains EFS17 and EFS108, optrA was located downstream of the ermA and ant(9)-1 genes. The strains EFS36 and EFS108 harboring poxtA-encoding plasmid cocarried fexA and cfr(D). These islands also contained IS1216E or the transposon Tn554, enabling the horizontal transfer of the phenicol-oxazolidinone resistance with other antimicrobial-resistant genes. Our results suggest that it is necessary to promote the prudent use of antibiotics through continuous monitoring and reevaluation.  相似文献   
9.
In this paper, we present an estimation of distribution algorithm (EDA) augmented with enhanced dynamic diversity controlling and local improvement methods to solve competitive coevolution problems for agent-based automated negotiations. Since optimal negotiation strategies ensure that interacting agents negotiate optimally, finding such strategies—particularly, for the agents having incomplete information about their opponents—is an important and challenging issue to support agent-based automated negotiation systems. To address this issue, we consider the problem of finding optimal negotiation strategies for a bilateral negotiation between self-interested agents with incomplete information through an EDA-based coevolution mechanism. Due to the competitive nature of the agents, EDAs should be able to deal with competitive coevolution based on two asymmetric populations each consisting of self-interested agents. However, finding optimal negotiation solutions via coevolutionary learning using conventional EDAs is difficult because the EDAs suffer from premature convergence and their search capability deteriorates during coevolution. To solve these problems, even though we have previously devised the dynamic diversity controlling EDA (D2C-EDA), which is mainly characterized by a diversification and refinement (DR) procedure, D2C-EDA suffers from the population reinitialization problem that leads to a computational overhead. To reduce the computational overhead and to achieve further improvements in terms of solution accuracy, we have devised an improved D2C-EDA (ID2C-EDA) by adopting an enhanced DR procedure and a local neighborhood search (LNS) method. Favorable empirical results support the effectiveness of the proposed ID2C-EDA compared to conventional and the other proposed EDAs. Furthermore, ID2C-EDA finds solutions very close to the optimum.  相似文献   
10.
Multimedia Tools and Applications - Automatic classification of fruit freshness plays an important role in the agriculture industry. In this work, we propose an ensemble model that combines the...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号