首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
轻工业   3篇
石油天然气   1篇
  2009年   2篇
  2007年   1篇
  2005年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
The surface of wooden shelves used in the ripening of a raw milk smear cheese was examined by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. FTIR spectra of zones of wooden shelves in contact with cheeses or not (control) were acquired. This acquisition was performed either directly after cheeses removal or after brushing with water to remove cheese compounds deposited onto wood surfaces. Their analysis revealed that the degree of similarity between the ATR-FTIR spectra of unused and cleaned by brushing wooden shelves is higher than with the spectra of non-cleaned surfaces. The spectra of non-cleaned zones where cheeses were ripened namely differed in the 920–1180 cm?1 and in the 1485–1780 cm?1 regions. These regions can be assigned to proteins and polysaccharides and thus might correspond to deposits of cheese rind surface as well as to the presence of microbial biofilms on wooden shelves. Similarities in these spectral regions with those of cheese rind support this hypothesis. These observations indicate that ATR-FTIR spectroscopy is a rapid and valuable analytical tool to directly investigate the global chemical composition of very thin films such as microbial biofilms or cheese rind deposits present on wooden shelves which are not accessible to standard chemical methods.  相似文献   
2.
Antimicrobial active films represent an innovative concept in food packaging, developed to answer to consumer's expectation for better microbiological safety. In this study, the growth of pathogenic micro-organisms on the surface of food is proposed to be controlled by coating, on the surface of polyethylene/polyamide/polyethylene film (PE/PA/PE), a film-forming solution containing Nisaplin, a commercial form of bacteriocin produced by Lactococcus lactis subsp. lactis: nisin. The bioactivity of these multi-layer films coated with Nisaplin loaded HydroxyPropylMethylCellulose film is based on the release of this antimicrobial molecule towards a food simulant. Nisin mass transfer was studied and modeled, for different operating conditions, generally encountered in food products. pH didn't seem to interfere with nisin release kinetics, while the variation of NaCl concentration between 0.8% and 3.2% decreased the desorption coefficient (kd) by 18% and the temperature increase from 10 °C to 28 °C resulted in an increase of kd from 1.78 × 10? 2 m s? 1 to 2.10 × 10? 2 m s? 1. Coating of PE/PA/PE film with this antimicrobial layer induced little mechanical properties modifications without compromising industrial applications. Water barrier capacity was not altered.Industrial relevanceThis paper concerns active packaging, considered as a new approach to preserve food shelf life. Active packaging is a real gain for plastic and Food industrials. Coating was used to obtain antimicrobial packaging. The impact of coating on film characteristics is investigated.Also, antimicrobial agent desorption is determined during storage conditions.  相似文献   
3.
4.
ABSTRACT: The inhibitory activity of chitosan-based edible coatings and films was assessed against the Aspergillus niger food pathogen and deterioration microorganism. Spore-counting assays showed an almost total inhibition of A. niger growth when either film-forming solution or film were used at a low concentration of chitosan (0.1% w/v). Epifluorescence microscopic results showed the action of chitosan on the relative proportion of RNA compared with DNA. The water vapor permeability (WVP) of chitosan film was relatively low compared with the poor moisture barrier of some polysaccharide films. Moreover, a coating with chitosan film on an agar gel, used as a food model, induced a 30% reduction in water loss. These results showed potential applications of chitosan-based films as bioactive packaging with properties to limit the food dehydration phenomenon.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号