首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   2篇
建筑科学   1篇
轻工业   46篇
水利工程   2篇
石油天然气   1篇
一般工业技术   1篇
冶金工业   1篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2013年   4篇
  2012年   7篇
  2011年   7篇
  2010年   4篇
  2009年   6篇
  2008年   4篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2001年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有52条查询结果,搜索用时 31 毫秒
1.
Bacterial populations associated with poultry processing were determined on neck skin samples, equipment surfaces and environmental samples by replicate surveys. Aerobic plate counts, Enterobacteriaceae counts, Enterobacteriaceae counts and Pseudomonas counts were performed by standard procedures and the prevalence of Listeria, presumptive Salmonella and Staphylococcus aureus determined. Statistically significant (P < 0.05) increases in counts of all types of bacteria were obtained on product samples as a result of processing. Although bacterial counts on neck skin samples decreased by 0.3 to 0.4 log CFU g-1 after spray washing of carcasses, subsequent spinchilling and packaging of whole carcasses resulted in 0.7 to 1.2 log CFU g-1 increases. Bacterial numbers on equipment surfaces, however, decreased significantly from the "dirty" to the "clean" areas of the abattoir. Transport cages, "rubber fingers", defeathering curtains, shackles and conveyor belts repeatedly showed aerobic plate counts in excess of 5.0 log CFU 25 cm-2. Aerobic plate counts of scald tank and spinchiller water were 2 log CFU ml-1 higher than those of potable water samples. Bacterial numbers of the air in the "dirty" area were higher than those of the "clean" area. Listeria, presumptive Salmonella and Staphylococcus aureus were isolated from 27.6, 51.7 and 24.1% of all product samples, respectively, and Listeria and Staphylococcus aureus were also isolated from selected equipment surfaces.  相似文献   
2.
Abstract: This study developed growth/no growth models for predicting growth boundaries of Listeria monocytogenes on ready‐to‐eat cured ham and uncured turkey breast slices as a function of lactic acid concentration (0% to 4%), dipping time (0 to 4 min), and storage temperature (4 to 10 °C). A 10‐strain composite of L. monocytogenes was inoculated (2 to 3 log CFU/cm2) on slices, followed by dipping into lactic acid and storage in vacuum packages for up to 30 d. Total bacterial (tryptic soy agar plus 0.6% yeast extract) and L. monocytogenes (PALCAM agar) populations were determined on day 0 and at the endpoint of storage. The combinations of parameters that allowed increases in cell counts of L. monocytogenes of at least l log CFU/cm2 were assigned the value of 1, while those limiting growth to <1 log CFU/cm2 were given the value of 0. The binary data were used in logistic regression analysis for development of models to predict boundaries between growth and no growth of the pathogen at desired probabilities. Indices of model performance and validation with limited available data indicated that the models developed had acceptable goodness of fit. Thus, the described procedures using bacterial growth data from studies with food products may be appropriate in developing growth/no growth models to predict growth and to select lactic acid concentrations and dipping times for control of L. monocytogenes. Practical Application: The models developed in this study may be useful in selecting lactic acid concentrations and dipping times to control growth of Listeria monocytogenes on cured ham and uncured turkey breast during product storage, and in determining probabilities of growth under selected conditions. The modeling procedures followed may also be used for application in model development for other products, conditions, or pathogens.  相似文献   
3.
United States regulations require ready-to-eat meat and poultry processors to control Listeria monocytogenes using interventions which may include antimicrobials that reduce post-processing contamination by at least 1 log-cycle; if the treatment achieves ≥2 log reductions, the plant is subject to less frequent microbial testing. Lactic acid (LA) may be useful as a post-lethality intervention and its antimicrobial properties may increase with temperature of application. The aim of this study was to evaluate the effect of LA solution concentration and temperature on L. monocytogenes counts of inoculated frankfurters and to identify parameters (concentration, temperature, and time) that achieve 1 and 2 log-unit immediate reductions. Frankfurters were surface-inoculated with a 10-strain mixture of L. monocytogenes (4.4 ± 0.1 log CFU/cm2) and then immersed in distilled water or LA solutions (0–3%) of 4, 25, 40, or 55 °C for 0–120 s. A regression equation for L. monocytogenes reduction included significant (P < 0.05) effects by the terms of concentration, time, temperature, and the interaction of concentration and temperature; other tested parameters (other interactions, quadratic and cubic terms), within the experimental range examined, did not affect (P ≥ 0.05) the extent of reduction. Results indicated that the effectiveness of LA against L. monocytogenes, in addition to concentration, increased with solution temperature (in the range of 0.6–2.8 log CFU/cm2). The developed equation may allow processors to vary conditions of treatment with LA to achieve a 1 or 2 log-unit reduction of the pathogen and comply with United States regulations.  相似文献   
4.
ABSTRACT: This study evaluated the fate of inoculated Listeria monocytogenes on frankfurters stored under conditions simulating those that may be encountered between manufacturing and consumption. Frankfurters with or without 1.5% potassium lactate and 0.1% sodium diacetate (PL/SD) were inoculated (1.8 ± 0.1 log CFU/cm2) with a 10‐strain composite of L. monocytogenes, vacuum‐packaged, and stored under conditions simulating predistribution storage (24 h, 4 °C), temperature abuse during transportation (7 h, 7 °C followed by 7 h, 12 °C), and storage before purchase (60 d, 4 °C; SBP). At 0, 20, 40, and 60 d of SBP, samples were exposed to conditions simulating delivery from stores to homes or food establishments (3 h, 23 °C), and then opened or held vacuum‐packaged at 4 or 7 °C for 14 d (SHF). Pathogen counts remained relatively constant on frankfurters with PL/SD regardless of product age and storage conditions; however, they increased on product without antimicrobials. In vacuum‐packaged samples, during SHF at 4 °C, the pathogen grew faster (P < 0.05) on older product (20 d of SBP) compared to product that was fresh (0 d of SBP); a similar trend was observed in opened packages. At 7 °C, the fastest growth (0.35 ± 0.02 log CFU/cm2/d) was observed on fresh product in opened packages; in vacuum‐packages, growth rates on fresh and aged products were similar. By day 40 of SBP the pathogen reached high numbers and increased slowly or remained unchanged during SHF. This information may be valuable in L. monocytogenes risk assessments and in development of guidelines for storage of frankfurters between package opening and product consumption.  相似文献   
5.
Listeria monocytogenes counts were determined during storage (82 days, 4 degrees C) in vacuum packages of inoculated bologna and salami slices and after exposure to a simulated dynamic model of the stomach and small intestine. Variables controlled in the model included gastric emptying and gastrointestinal fluid secretion rates, gradual gastric acidification, and intestinal pH maintenance. L. monocytogenes populations increased on bologna and decreased on salami, reaching 8.7 and 1.4 log CFU/g, respectively, on day 82. Inactivation rates (IR) during gastric exposure of bologna and salami ranged from 0.079 (day 14) to 0.158 (day 57) log CFU/g/min and from 0.013 (day 42) to 0.051 (day 1) log CFU/g/min, respectively. On corresponding days, gastric IR for cells on salami were lower than on bologna, suggesting potential protective effects of the former product. However, it is also possible that the low initial L. monocytogenes levels reached with storage of salami (< or = 2.5 log CFU/g after day 27) may have resulted in slower reductions than in the high levels on bologna. Gradual decline of gastric pH allowed survival in the gastric compartment during the initial stages, which resulted in a large fraction of the cells being delivered into the intestinal compartment. Intestinal IR ranged from 0.003 to 0.048 (bologna) and from 0.002 to 0.056 (salami) log CFU/g/min throughout storage. Although findings indicated potential effects of salami against gastric killing of L. monocytogenes, any effects of the food matrix per se on the gastrointestinal survival of the pathogen were overwhelmed by the high and low contamination levels reached on bologna and salami, respectively, during storage.  相似文献   
6.
This study evaluated post-processing chemical solutions for their antilisterial effects on commercial smoked sausage formulated with or without 1.5% potassium lactate plus 0.05% sodium diacetate, and contaminated (approximately 3-4 log cfu/cm(2)) with 10-strain composite Listeria monocytogenes inocula prepared under various conditions. Inoculated samples were left untreated, or were immersed (2 min, 25 +/- 2 degrees C) in solutions of acetic acid (2.5%), lactic acid (2.5%), potassium benzoate (5%) or Nisaplin (0.5%, equivalent to 5000 IU/ml of nisin) alone, and in sequence (Nisaplin followed by acetic acid, lactic acid or potassium benzoate), before vacuum packaging and storage at 10 degrees C (48 days). Acetic acid, lactic acid or potassium benzoate applied alone reduced initial L. monocytogenes populations by 0.4-1.5 log cfu/cm(2), while treatments including Nisaplin caused reductions of 2.1-3.3 log cfu/cm(2). L. monocytogenes on untreated sausage formulated with antimicrobials had a lag phase duration of 10.2 days and maximum specific growth rate (mu(max)) of 0.089 per day, compared to no lag phase and mu(max) of 0.300 per day for L. monocytogenes on untreated product that did not contain antimicrobials in the formulation. The immersion treatments inhibited growth of the pathogen for 4.9-14.8 days on sausage formulated without potassium lactate-sodium diacetate; however, in all cases significant (P < 0.05) growth occurred by the end of storage. The antilisterial activity of chemical solutions was greatly enhanced when applied to product formulated with antimicrobials; growth was completely inhibited on sausage treated with acetic or lactic acid alone, and in sequence with Nisaplin. In general, habituation (15 degrees C, 7 days) of L. monocytogenes cells, planktonically or as attached cells to stainless-steel coupons in sausage homogenate prior to contamination of product, resulted in shorter lag phase durations compared with cells cultivated planktonically in a broth medium. Furthermore, when present, high levels of spoilage flora were found to suppress growth of the pathogen. Findings of this study could be useful to US meat processors in their efforts to select required regulatory alternatives for control of post-processing contamination in meat products.  相似文献   
7.
Caprylic acid (CAA), carvacrol (CAR), ε-polylysine (POL), and their combinations were evaluated for reduction of Salmonella contamination in not-ready-to-eat surface-browned, frozen, breaded chicken products. Fresh chicken breast meat pieces (5 × 5 × 5 cm) were inoculated with Salmonella (7-strain mixture; 4-5 log CFU/g) and mixed with distilled water (control) or with CAA, CAR, and POL as single or combination treatments of 2 or 3 ingredients. Sodium chloride (1.2%) and sodium tripolyphosphate (0.3%) were added to all formulations, followed by grinding of the mixtures and forming into 9 × 5 × 3 cm portions. Sample surfaces were brushed with egg whites, coated with breadcrumbs, surface-browned in an oven (208 °C, 15 min), packaged, and stored at -20 °C (7 d). Total reductions of inoculated Salmonella in untreated (control) surface-browned, breaded products after frozen storage were 0.8 to 1.4 log CFU/g. In comparison, single treatments of CAA (0.25% to 1.0%), CAR (0.3% to 0.5%), and POL (0.125% to 1.0%) reduced counts by 2.9 to at least 4.5, 3.4 to at least 4.4, and 1.4 to 2.3 log CFU/g, respectively, depending on concentration. Pathogen counts of products treated with 2- or 3-ingredient combination treatments (0.03125% to 0.25% CAA, 0.0375% to 0.3% CAR, and/or 0.5% POL) were 0.4 to at least 3.3 log CFU/g lower (depending on treatment) than those of the untreated controls. The antimicrobial activity of 2-ingredient combinations comprised of 0.125% CAA, 0.15% CAR, or 0.5% POL was enhanced (P < 0.05) when applied as a 3-ingredient combination (that is, 0.125% CAA + 0.15% CAR + 0.5% POL). These data may be useful for the selection of antimicrobial treatments to reduce Salmonella contamination in not-ready-to-eat processed chicken products. PRACTICAL APPLICATION: Findings from the study may be useful for the selection of suitable antimicrobials, concentrations, and combinations to reduce Salmonella contamination in not-ready-to-eat surface-browned, frozen, breaded chicken products.  相似文献   
8.
Escherichia coli O157:H7 attached to beef-contact surfaces found in beef fabrication facilities may serve as a source of cross-contamination. This study evaluated E. coli O157:H7 attachment, survival and growth on food-contact surfaces under simulated beef processing conditions. Stainless steel and high-density polyethylene surfaces (2 × 5 cm) were individually suspended into each of three substrates inoculated (6 log CFU/ml or g) with E. coli O157:H7 (rifampicin-resistant, six-strain composite) and then incubated (168 h) statically at 4 or 15 °C. The three tested soiling substrates included sterile tryptic soy broth (TSB), unsterilized beef fat-lean tissue (1:1 [wt/wt]) homogenate (10% [wt/wt] with sterile distilled water) and unsterilized ground beef. Initial adherence/attachment of E. coli O157:H7 (0.9 to 2.9 log CFU/cm2) on stainless steel and high-density polyethylene was not affected by the type of food-contact surface but was greater (p < 0.05) through ground beef. Adherent and suspended E. coli O157:H7 counts increased during storage at 15 °C (168 h) by 2.2 to 5.4 log CFU/cm2 and 1.0 to 2.8 log CFU/ml or g, respectively. At 4 °C (168 h), although pathogen levels decreased slightly in the substrates, numbers of adherent cells remained constant on coupons in ground beef (2.4 to 2.5 log CFU/cm2) and increased on coupons in TSB and fat-lean tissue homogenate by 0.9 to 1.0 and 1.7 to 2.0 log CFU/cm2, respectively, suggesting further cell attachment. The results of this study indicate that E. coli O157:H7 attachment to beef-contact surfaces was influenced by the type of soiling substrate and temperature. Notably, attachment occurred not only at a temperature representative of beef fabrication areas during non-production hours (15 °C), but also during cold storage (4 °C) temperatures, thus, rendering the design of more effective sanitation programs necessary.  相似文献   
9.
This study assessed the acid tolerance response (ATR) of stationary phase, acid-adapted (tryptic soy broth [TSB]+1% glucose) or nonacid-adapted (glucose-free TSB) Escherichia coli O157:H7 strains (ATCC43889, ATCC43895, ATCC51658 and EO139), grown individually or in a mixed culture, prior to inoculation of beef or meat decontamination runoff (washings) fluids (acidic [pH 4.95] or nonacidic [pH 7.01]). The inoculated beef was left untreated or treated by dipping for 30s in hot water (75 degrees C) followed by 2% lactic acid (55 degrees C). Inoculated beef samples and washings were stored aerobically at 4 or 15 degrees C for 6d, and at set intervals (0, 2, and 6d) were exposed (for 0, 60, 120, and 180min) to pH 3.5 (adjusted with lactic acid) TSB plus 0.6% yeast extract. Overall, there were no significant (P0.05) differences in responses of cultures prepared as individual or mixed strains. Decontamination of meat did not affect the subsequent ATR of E. coli O157:H7 other than resulting in lower initial pathogen levels exposed to acidic conditions. In this study, E. coli O157:H7 appeared to become more tolerant to acid following incubation in acidic washings of sublethal pH (4.89-5.22) compared to nonacidic washings (pH 6.97-7.41) at 4 degrees C or in both types of washings incubated at 15 degrees C. The ATR of the pathogen inoculated into washings was enhanced when cells were previously acid-adapted and incubated at 4 degrees C. Similarly, the ATR on meat was increased by previous acid-adaptation of the inoculum in broth and enhanced by storage at 4 degrees C. Populations on treated meat were consistently lower than those on untreated meat during storage and following exposure to acid. Although on day-0 there were no significant (P0.05) differences in ATR between acid-adapted and nonacid-adapted populations on meat, acid-adapted cells displayed consistently higher resistance through day-6. This suggests that acid-adapted E. coli O157:H7 introduced on meat may become resistant to subsequent lactic acid exposure following storage at 4 degrees C.  相似文献   
10.
This study compared biofilm formation by 7 serogroups of pathogenic Escherichia coli and 2 or 3 phenotypes of Salmonella (susceptible, multidrug‐resistant [MDR], and/or multidrug resistant with ampC gene [MDR‐AmpC]). One‐week mature biofilms were also exposed to water, quaternary ammonium compound‐based (QAC), and acid‐based (AB) sanitizers. Seven groups (strain mixture) of above‐mentioned pathogens were separately spot‐inoculated onto stainless steel coupons surfaces for target inoculation of 2 log CFU/cm2, then stored statically, partially submerged in 10% nonsterilized meat homogenate at 4, 15, and 25 °C. Biofilm cells were enumerated on days 0, 1, 4, and 7 following submersion in 30 mL for 1 min in water, QAC, and AB. Counts on inoculation day ranged from 1.6 ± 0.4 to 2.4 ± 0.6 log CFU/cm2 and changed to 1.2 ± 0.8 to 1.9 ± 0.8 on day 7 at 4 °C with no appreciable difference among the 7 pathogen groups. After treatment with QAC and AB on day 7, counts were reduced (P < 0.05) to less than 0.7 ± 0.6 and 1.2 ± 0.5, respectively, with similar trends among pathogens. Biofilm formation at higher temperatures was more enhanced; E. coli O157:H7, as an example, increased (P < 0.05) from 1.4 ± 0.6 and 2.0 ± 0.3 on day 0 to 4.8 ± 0.6 and 6.5 ± 0.2 on day 7 at 15 and 25 °C, respectively. As compared to 4 °C, after sanitation, more survivors were observed for 15 and 25 °C treatments with no appreciable differences among pathogens. Overall, we observed similar patterns of growth and susceptibility to QAC and AB sanitizers of the 7 tested pathogen groups with enhanced biofilm formation capability and higher numbers of treatment survivors at higher temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号