首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   3篇
化学工业   7篇
建筑科学   1篇
能源动力   7篇
轻工业   6篇
一般工业技术   3篇
自动化技术   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2012年   2篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
Thermoelectric (TE) modules are possible reversible pre‐cooling and pre‐heating devices for ventilation air in buildings. In this study, the opportunity of direct coupling of TE modules with photovoltaic (PV) cells is considered. This coupling is evaluated through a numerical simulation depending on the meteorological conditions of Chambéry, Alpine region in France, and on the cooling or heating use of the TE modules, through annual energy and exergy efficiencies. For the considered conditions, TE module performances are of the same order as the ones of the vapour compression heat pumps, with a TE coefficient of performance higher than 2 for low values of input DC current. The PV–TE coupling efficiency varies between 0.096 and 0.23 over the year, with an average value of 0.157. Evolutions of the exergy effectiveness of PV and TE elements follow the same trends as the corresponding energy efficiencies but with steeper variations for the coupling exergy yield that varies between 0.004 and 0.014, with an annual average value of 0.010. The direct PV–TE coupling does not seem to be a sustainable option for the summer cooling purpose particularly. A case study with indirect coupling under a warm climate is considered and shows that the use of TE devices could be efficient in housing to ensure summer thermal comfort, but the corresponding necessary PV area would induce a high investment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
2.
A solar deep-freezing process has been designed. It aims at cooling down a cold box to about −20 °C, using simple flat plate solar collectors operating at 70 °C. This original process involves two cascaded thermochemical systems based on the BaCl2/ammonia reaction. Its working mode is discontinuous as it alternates between a regeneration mode during daytime and a cold production mode during nighttime. A global dynamic model involving the various system components allows the simulation of the process; it predicts the evolution of the components temperatures and the rates of chemical reactions of the system. It also allows the dimensioning of the system components to maintain a 500 l cold box at −20 °C during the 6 sunniest months of the year under typical Mediterranean weather conditions and provide over 80% of the total yearly cooling needs of this box. This requires a solar collector area of 5.8 m2 and 39 kg of reactive salt. The predicted coefficient of performance (COP) is about 0.1 over the year, and the net solar COP, taking into account the collector efficiencies, is 0.05.  相似文献   
3.
4.
In the past decade, long-term sorption and thermochemical heat storage has generated lot of interest. This paper presents the state of the art in this field of research, materials used in these systems and technological difficulties that researchers are set against. An emphasis is put on recent demonstrative projects including absorption and adsorption for long-term solar energy storage. It emerges that considerable breakthrough have been made. Even though there is no mature long-term sorption or thermochemical energy storage yet, primarily due to the high cost of materials, the suitability of this technology to long-term storage remains its main power of attracting.  相似文献   
5.
This paper investigates heat and mass transfer occurring in an interseasonal absorption heat storage system using LiBr/H2O as the sorption couple. It focuses on the poor performances of the falling film exchangers with vertical tubes, which are characterized by low flow rate compared to conventional absorption machines. A numerical model was developed for the study and validated with specific experimental results. Comparison of the numerical model to experimental results from the heat storage prototype shows the presence of abnormally high thermal resistance between the falling films and the exchanger surfaces. The deterioration in performance appears to originate in the low wetting rate of the surfaces. A new design of the exchangers is proposed to solve this problem and thus attain the desired performance.  相似文献   
6.
7.
8.
The design of a prototype remote‐controlled glacier‐surveying robot, capable of taking accurate above‐ and below‐water measurements of calving glacier fronts, using swath bathymetry and laser scanning hardware is presented. Data captured using the remote control system during field trials on the Lille Gletscher in western Greenland are informally compared with data captured using the same sensors from the same glacier using a much larger manned vessel during the same time period. The potential use of such a device during extended repeat survey missions is discussed and the implications in terms of both the improvement in data quality and the logistics in the field are also outlined. Future improvements to the robot and in particular the control system are described, as well as mechanical and electrical design considerations that became apparent during trials. The transition to a more autonomous system and the possibility of full autonomy are considered. © 2012 Wiley Periodicals, Inc.  相似文献   
9.
A solar thermochemical prototype producing low-temperature cold has been built and tested during the summer and autumn 2005 in Perpignan, France. It cools a 560 L cold box down to about −25 °C using only low-grade heat produced by two simple flat plate solar collectors. The process involves two cascaded thermochemical systems using BaCl2 salt reacting with ammonia. Its working mode is discontinuous, as it alternates between one decomposition mode at high pressure (daytime) and one cold production mode at low pressure (nighttime). Experimental results prove the feasibility of this new concept of solar cold production, with temperatures as low as −30 °C, demonstrate its potential use in housing, by the acceptable size and weight of the system and show the system performances during the sunniest months of the year, with a rough solar coefficient of performance (COP) of about 0.031 over the test period. The major meteorological parameters influencing the process efficiency are the solar irradiation and the outside temperature.  相似文献   
10.
The development of efficient long-term heat storage systems could significantly increase the use of solar thermal energy for building heating. Among the different heat storage technologies, the absorption heat storage system seems promising for this application. To analyze the potential of this technology, a numerical model based on mass, species, energy, and exergy balances has been developed. The evolution over time of the storage imposes a transient approach. Simulations were performed considering temperature conditions close to those of a storage system used for space heating coupled to solar thermal collectors (as the heat source), with ground source heat exchangers (as the cold source). The transient behavior of the system was analyzed in both the charging and discharging phases. This analysis highlights the lowering of energetic and exergetic performance during both phases, and these phenomena are discussed. The thermal efficiency and the energy storage density of the system were determined, equal to 48.4 % and 263 MJ/m3, respectively. The exergetic efficiency is equal to 15.0 %, and the exergy destruction rate is 85.8 %. The key elements in terms of exergy destruction are the solution storage tank, the generator, and the absorber. The impact of using a solution heat exchanger (SHX) was studied. The risk of the solution crystallizing in the SHX was taken into account. With a SHX, the thermal efficiency of the system can reach 75 %, its storage density was 331 MJ/m3, and its exergetic efficiency and exergy destruction rate was 23.2 and 77.3 %, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号