首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   313篇
  免费   19篇
电工技术   7篇
综合类   1篇
化学工业   109篇
金属工艺   15篇
机械仪表   3篇
建筑科学   3篇
能源动力   12篇
轻工业   40篇
水利工程   1篇
无线电   17篇
一般工业技术   56篇
冶金工业   7篇
原子能技术   34篇
自动化技术   27篇
  2024年   1篇
  2023年   8篇
  2022年   14篇
  2021年   22篇
  2020年   5篇
  2019年   12篇
  2018年   8篇
  2017年   17篇
  2016年   14篇
  2015年   5篇
  2014年   17篇
  2013年   21篇
  2012年   21篇
  2011年   25篇
  2010年   14篇
  2009年   15篇
  2008年   12篇
  2007年   13篇
  2006年   3篇
  2005年   15篇
  2004年   7篇
  2003年   8篇
  2002年   4篇
  2001年   5篇
  2000年   2篇
  1999年   5篇
  1998年   9篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1985年   2篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1973年   1篇
  1969年   2篇
  1968年   1篇
排序方式: 共有332条查询结果,搜索用时 15 毫秒
1.
Carbon-and-oxygen-doped AlN specimens were prepared by combustion synthesis using Al, graphite, and AlN. Graphite addition changed the product color from white to blue. By XRD, the lattice constant increased slightly with increasing carbon content. Blue AlN powder was synthesized with a molar ratio of the diluent AlN of 0.2-0.5 with a fixed graphite content of 0.05. At an AlN molar ratio exceeding 0.6, carbon was not successfully incorporated due to the lower reaction temperature. Calcination at 800°C in air removed residual graphite without changing the crystal structure or product color. Oxygen, nitrogen, and carbon analyses revealed that blue AlN powders contained 0.45-0.54 mass% carbon and 1.4-1.6 mass% oxygen, while the undoped AlN contained 0.021 mass% carbon and 0.94 mass% oxygen. The origin of the white-to-blue color change was investigated via reflection measurements. Blue AlN exhibits an absorption peak at 634 nm (1.96 eV). From first-principles electronic structure calculations, the C-doped AlN and carbon-and-oxygen-doped AlN with a 1:1 ratio could be classified as p-type, whereas the O-doped AlN and 1:3 carbon-and-oxygen-doped AlN were n-type. One reason for the absorption peak at 634 nm may be a transition from the conduction band to an upper unoccupied state. These results suggest the possible control of optical and electronic properties of AlN via carbon-and-oxygen doping.  相似文献   
2.
We have investigated the electrochemical noise behavior of carbon steel in fully deaerated aqueous bicarbonate solutions, and discussed the optimum conditions of the noise analysis for estimating corrosion rate of the steel. Noise of the potential difference and of the short-circuit current between two identical steel coupons were successfully measured. The time-series noise patterns were transformed into frequency domain by fast Fourier transformation, and then their power spectrum densities (PSDs) at a frequency were determined to be compared with the corrosion rate. The PSDs of the potential and of the current varied with changing environmental factors of bicarbonate concentration, pH, and immersion time. The factors also controlled the corrosion rate of the steel. The PSDs were associated with the corrosion rate, and then it was found that the PSDs of the potential and of the current showed linear correlation with the corrosion rate in log-log scale. There was also linear relationship between the corrosion rate and a spectral noise resistance obtained from the PSDs of the potential and the current. The linearities of the three correlations were better at a lower analyzed frequency. Furthermore, the PSDs of the current and the noise resistance indicated more linear correlation with the corrosion rate than that of the potential. As the simplicity of the measurement system is additionally considered, it is concluded that the PSD of the current noise at an analyzed frequency of 3 mHz is the optimum conditions for estimating the corrosion rate from 10−2 to 100 A m−2 in this study.  相似文献   
3.
Applied Intelligence - A multi-agent system (MAS) is expected to be applied to various real-world problems where a single agent cannot accomplish given tasks. Due to the inherent complexity in the...  相似文献   
4.
The distribution of nano-sized silica in binary rubber blends is characterized by scanning transmission electron microscopy (STEM) tomography combined with energy dispersive X-ray spectrometry (EDX). 3D distribution of silica is visualized by STEM-EDX tomography with the tilt-series of silicon elemental maps, while the phase-separated morphologies of polyisoprene rubber (IR) and styrene-butadiene rubber (SBR) are visualized by STEM-tomography in high-angle-annular-dark field (HAADF) mode. The combination of STEM-EDX and STEM-HAADF tomography enables us to determine the distribution of silica between the two rubber phases quantitatively even with high contents of silica up to 70 phr (weight parts per hundred rubber). It is found that silica is preferentially distributed in the SBR phase, but it is also distributed in the IR phase when the IR fraction in the total rubber components is higher than 40 wt%. The preferential distribution of silica in the SBR phase improves the dispersion of the IR domains. This is the first use of this technique for a multicomponent polymer system, showing the advantage to characterize the complicated multicomponent polymer composite morphologies.  相似文献   
5.
Laws of dynamic nano-friction (i.e., continuous wearless friction) were searched for under steady spatial distributions of the local quasi-temperature, by molecular dynamics (MD) simulations. The temperature control of the non-conservative model was carried out by extending the isothermal MD method using the Nosé–Poincaré thermostat. The results suggested that the threshold phenomenon characterizes sliding-velocity dependence of the nano-frictional force between crystal lattices constituting a nano-electromechanical system (NEMS). This phenomenon was turned out to be a universal feature, whether heat transfer to the environment exists or not.  相似文献   
6.
Flower-shaped crystals with diameters of 100–200 μm consisting of LaBGeO5 (LBGO) single crystals similar to petals were observed in the interior of transparent LBGO surface-crystallized glasses. Each flower-shaped crystal was radially grown from the surface of the included bubbles. A more intense second-harmonic generation was observed from the LBGO crystallized glasses with the flower-shaped LBGO single crystals compared to the samples without such crystals based on the Maker fringe technique and second-harmonic (SH) generation microscopy. The SH intensity for the flower-shaped LBGO single crystals monotonically decreased with increasing temperature up to 350 °C, less than the Curie temperature reported so far (530 °C). It is considered that the internal compressive stress induced by the difference in the thermal expansion between the LBGO single crystal and the corresponding glass affect the ferroelectric property of the flower-shaped LBGO single crystals in glass.  相似文献   
7.
Although conventional electron microscopy (EM) requires samples to be in vacuum, most chemical and physical reactions occur in liquid or gas. The Atmospheric Scanning Electron Microscope (ASEM) can observe dynamic phenomena in liquid or gas under atmospheric pressure in real time. An electron-permeable window made of pressure-resistant 100 nm-thick silicon nitride (SiN) film, set into the bottom of the open ASEM sample dish, allows an electron beam to be projected from underneath the sample. A detector positioned below captures backscattered electrons. Using the ASEM, we observed the radiation-induced self-organization process of particles, as well as phenomena accompanying volume change, including evaporation-induced crystallization. Using the electrochemical ASEM dish, we observed tree-like electrochemical depositions on the cathode. In silver nitrate solution, we observed silver depositions near the cathode forming incidental internal voids. The heated ASEM dish allowed observation of patterns of contrast in melting and solidifying solder. Finally, to demonstrate its applicability for monitoring and control of industrial processes, silver paste and solder paste were examined at high throughput. High resolution, imaging speed, flexibility, adaptability, and ease of use facilitate the observation of previously difficult-to-image phenomena, and make the ASEM applicable to various fields.  相似文献   
8.
The plasmonic properties of noble metals facilitate their use for in vivo bio‐applications such as targeted drug delivery and cancer cell therapy. Nanosilver is best suited for such applications as it has the lowest plasmonic losses among all such materials in the UV‐visible spectrum. Its toxicity, however, can destroy surrounding healthy tissues and thus, hinders its safe use. Here, that toxicity against a model biological system (Escherichia coli) is “cured” or blocked by coating nanosilver hermetically with a about 2 nm thin SiO2 layer in one‐step by a scalable flame aerosol method followed by swirl injection of a silica precursor vapor (hexamethyldisiloxane) without reducing the plasmonic performance of the enclosed or encapsulated silver nanoparticles (20–40 nm in diameter as determined by X‐ray diffraction and microscopy). This creates the opportunity to safely use powerful nanosilver for intracellular bio‐applications. The label‐free biosensing and surface bio‐functionalization of these ready‐to‐use, non‐toxic (benign) Ag nanoparticles is presented by measuring the adsorption of bovine serum albumin (BSA) in a model sensing experiment. Furthermore, the silica coating around nanosilver prevents its agglomeration or flocculation (as determined by thermal annealing, optical absorption spectroscopy and microscopy) and thus, enhances its biosensitivity, including bioimaging as determined by dark field illumination.  相似文献   
9.
A new protein separation process using a surfactant and a polar organic solvent consists of a precipitation step and a recovery step. In the precipitation step, a protein-surfactant complex is precipitated from an aqueous solution, when an ionic surfactant, sodium di(2-ethylhexyl) sulfosuccinate (AOT), is added to an aqueous solution, including protein (lysozyme). In the recovery step, the precipitate is dissolved in a polar organic solvent, such as acetone, and the protein is recovered as precipitates when a very small amount of salt solution was added to remove surfactants from the protein-surfactant complex. However, the details of the protein recovery step from precipitate have not been studied yet. In this study, the improvement of the protein recovery step was examined from the viewpoint of a recovery ratio of protein and a remaining ratio of surfactant. The optimum NaCl concentration in the feed for the protein recovery was in the range of 0.05–0.2 kmol/m3. As the NaCl concentration in the feed increased to more than 0.2 kmol/m3, the precipitation ratio decreased due to the electrostatic screening effect of NaCl. It was found that the addition of a very small amount of NaCl solution to acetone was unnecessary when NaCl was included in the feed lysozyme solution. On the other hand, as the NaCl concentration decreased to less than 0.05 kmol/m3, the precipitation ratio was decreased due to the low re-precipitation of protein by the addition of a small amount of NaCl solution in acetone. In the case of the feed containing no salt, the desired NaCl concentration added to acetone was in the range above 0.2 kmol/m3. In addition, the most suitable volume ratio of acetone to feed was found to be 0.2.  相似文献   
10.
Dysregulation of tumor necrosis factor-α (TNFα), a pro-inflammatory cytokine, causes several diseases, making it an important therapeutic target. Here, we identified a novel DNA aptamer against human TNFα using in vitro selection, which included a high exclusion pressure process against non-binding and weak binders through microbead-assisted capillary electrophoresis (MACE) in only three rounds. Among the 15 most enriched aptamers, Apt14 exhibited the highest inhibitory activity for the interaction between TNFα and its cognate receptor in mouse L929 cells. For further improving the bioactivity of the aptamer, dimerization programed by hybridization was evaluated, resulting in the Apt14 dimer exhibited a twofold higher binding affinity and stronger inhibition compared to the monomer counterpart. Rapid identification of bioactive aptamers using MACE in combination with facile dimerization by hybridization accelerates the discovery of novel bioactive aptamers, paving the way toward replacing current monoclonal antibody therapy with the less expensive and non-immunogenic aptamer therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号