首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   2篇
化学工业   1篇
轻工业   2篇
一般工业技术   1篇
冶金工业   3篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  1998年   3篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Prediction of future observations is a fundamental problem in statistics. Here we present a general approach based on the recently developed inferential model (IM) framework. We employ an IM-based technique to marginalize out the unknown parameters, yielding prior-free probabilistic prediction of future observables. Verifiable sufficient conditions are given for validity of our IM for prediction, and a variety of examples demonstrate the proposed method’s performance. Thanks to its generality and ease of implementation, we expect that our IM-based method for prediction will be a useful tool for practitioners. Supplementary materials for this article are available online.  相似文献   
2.
We have identified a novel fungal metabolite that is an inhibitor of human farnesyl-protein transferase (FPTase) by randomly screening natural product extracts using a high-throughput biochemical assay. Clavaric acid [24, 25-dihydroxy-2-(3-hydroxy-3-methylglutaryl)lanostan-3-one] was isolated from Clavariadelphus truncatus; it specifically inhibits human FPTase (IC50 = 1.3 microM) and does not inhibit geranylgeranyl-protein transferase-I (GGPTase-I) or squalene synthase activity. It is competitive with respect to Ras and is a reversible inhibitor of FPTase. An alkaline hydrolysis product of clavaric acid, clavarinone [2,24,25-trihydroxylanostan-3-one], lacking the 3-hydroxy-3-methylglutaric acid side chain is less active as a FPTase inhibitor. Similarly, a methyl ester derivative of clavaric acid is also inactive. In Rat1 ras-transformed cells clavaric acid and lovastatin inhibited Ras processing without being overtly cytotoxic. Excess mevalonate reversed the effects of lovastatin but not of clavaric acid suggesting that the block on Ras processing by clavaric acid was due to inhibition of FPTase and not due to inhibition of HMG-CoA reductase. Despite these results, the possibility existed that clavaric acid inhibited Ras processing by directly inhibiting HMG-CoA reductase. To directly examine the effects of clavaric acid and clavarinone on HMG-CoA reductase, cholesterol synthesis was measured in HepG2 cells. No inhibition of HMG-CoA reductase was observed indicating that the inhibition of Ras processing by this class of compounds is due to inhibition of FPTase. To date, clavaric acid is the second reported nitrogen-free compound that competes with Ras to inhibit FPTase activity. A series of related compounds derived from computer-based similarity searches and subsequent rational chemical synthetic design provided compounds that exhibited a range of activity (0.04 --> 100 microM) against FPTase. Modest changes in the structures of these inhibitors dramatically change the inhibitory activity of these inhibitors.  相似文献   
3.
Farnesyl-protein transferase (FPTase) catalyses the specific transfer of farnesyl to Ras-peptides that is essential for oncogenic activity in oncogene-mediated tumors. Specific inhibition of FPTase activity has been shown to reduce tumor development in nude mice challenged with oncogenic forms of ras, thereby establishing FPTase as a viable therapeutic target. Our continued efforts to discover inhibitors of FPTase has led to the discovery of a triterpenoidal inhibitor, clavaric acid (1). This compound inhibits rHFPTase with an IC50 value of 1.3 microM. Structure elucidation, structure modifications, and biological activity of clavaric acid are herein described.  相似文献   
4.
5.
The purpose of the study was to determine the effect of high‐hydrostatic pressure (HHP) on inactivation of human norovirus (HuNoV) in oysters and to evaluate organoleptic characteristics of oysters treated at pressure levels required for HuNoV inactivation. Genogroup I.1 (GI.1) or Genogroup II.4 (GII.4) HuNoV was inoculated into oysters and treated at 300 to 600 MPa at 25 and 0 °C for 2 min. After HHP, viral particles were extracted by porcine gastric mucin‐conjugated magnetic beads (PGM‐MBs) and viral RNA was quantified by real‐time RT‐PCR. Lower initial temperature (0 °C) significantly enhanced HHP inactivation of HuNoV compared to ambient temperature (25 °C; P < 0.05). HHP at 350 and 500 MPa at 0 °C could achieve more than 4 log10 reduction of GII.4 and GI.1 HuNoV in oysters, respectively. HHP treatments did not significantly change color or texture of oyster tissue. A 1‐ to 5‐scale hedonic sensory evaluation on appearance, aroma, color, and overall acceptability showed that pressure‐treated oysters received significantly higher quality scores than the untreated control (P < 0.05). Elevated pressure levels at 450 and 500 MPa did not significantly affect scores compared to 300 MPa at 0 °C, indicating increasing pressure level did not affect sensory acceptability of oysters. Oysters treated at 0 °C had slightly lower acceptability than the group treated at room temperature on day 1 (P < 0.05), but after 1 wk storage, no significant difference in sensory attributes and consumer desirability was observed (P > 0.05).  相似文献   
6.
Farnesyl-protein transferase (FPTase) is a critical enzyme that participates in the post-translational modification of the Ras protein. Inhibitors of this enzyme have the potential of being novel anticancer agents for tumors in which the ras oncogene is found mutated and contributes to cell transformation. Continued screening of natural product extracts led to the isolation of kampanols, which are novel and specific inhibitors of FPTase. The most active kampanols exhibited IC50 values between 7 to 13 microM against human recombinant FPTase. The isolation, structure determination, and biological activity of these compounds are described.  相似文献   
7.
The change in the quality attributes (physical, microbial, and chemical) of oysters (Crassostrea virginica) after high hydrostatic pressure (HHP) treatment at 300 MPa at room temperature (RT, 25 °C) 300, 450, and 500 MPa at 0 °C for 2 min and control oysters without treatment were evaluated over 3 wk. The texture and tissue yield percentages of oysters HHP treated at 300 MPa, RT increased significantly (P < 0.05) compared to control. Aerobic and psychrotrophic bacteria in control oysters reached the spoilage point of 7 log CFU/g after 15 d. Coliform counts (log MPN/g) were low during storage with total and fecal coliforms less than 3.5 and 1.0. High pressure treated oysters at 500 MPa at 0 °C were significantly higher (P < 0.05) than oysters HHP treated at 300 MPa at 0 °C in lipid oxidation values. The highest pressure (500 MPa) treatment in this study, significantly (P < 0.05) decreased unsaturated fatty acid percentage compared to control. The glycogen content of control oysters at 3 wk was significantly higher (P < 0.05) when compared to HHP treated oysters [300 MPa, (RT); 450 MPa (0 °C); and 500 MPa (0 °C)]. HHP treatments of oysters were not significantly different in pH, percent salt extractable protein (SEP), and total lipid values compared to control. Based on our results, HHP prolongs the physical, microbial, and chemical quality of oysters.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号