首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
无线电   6篇
一般工业技术   1篇
  2004年   1篇
  2001年   3篇
  2000年   1篇
  1997年   2篇
排序方式: 共有7条查询结果,搜索用时 859 毫秒
1
1.
A logarithmic upper bound on the minimum distance of turbo codes   总被引:1,自引:0,他引:1  
We derive new upper bounds on the minimum distance, which turbo codes can maximally attain with the optimum interleaver of a given length. The new bounds grow approximately logarithmically with the interleaver length, and they are tighter than all previously derived bounds for medium-length and long interleavers. An extensive discussion highlights the impacts of the new bounds in the context of interleaver design and provides some new design guidelines.  相似文献   
2.
SLM peak-power reduction without explicit side information   总被引:1,自引:0,他引:1  
Selected mapping (SLM) peak-power reduction is distortionless as it selects the actual transmit signal from a set of alternative signals, which all represent the same information. The specific signal generation information needs to be transmitted and carefully protected against bit errors. Here, me propose an extension of SLM, which employs scrambling and refrains from the use of explicit side information in the receiver. Some additional complexity and nearly vanishing redundancy is introduced to achieve markedly improved transmit signal statistics. Even though SLM is applicable with any modulation, we concentrate on orthogonal frequency-division multiplexing (OFDM) in this letter  相似文献   
3.
The super-trellis structure of turbo codes   总被引:1,自引:0,他引:1  
In this contribution we derive the super-trellis structure of turbo codes. We show that this structure and its associated decoding complexity depend strongly on the interleaver applied in the turbo encoder. We provide upper bounds for the super-trellis complexity. Turbo codes are usually decoded by an iterative decoding algorithm, which is suboptimum. Applying the super-trellis structure, we can optimally decode simple turbo codes and compare the associated bit-error rate results to those of iterative algorithms  相似文献   
4.
An upper bound on the minimum distance of turbo codes is derived, which depends only on the interleaver length and the component scramblers employed. The derivation of this bound considers exclusively turbo encoder input words of weight 2. The bound does not only hold for a particular interleaver but for all possible interleavers including the best. It is shown that in contrast to general linear binary codes the minimum distance of turbo codes cannot grow stronger than the square root of the block length. This implies that turbo codes are asymptotically bad. A rigorous proof for the bound is provided, which is based on a geometric approach  相似文献   
5.
Breiling  M. Hanzo  L. 《Electronics letters》1997,33(10):848-849
An optimum non-iterative turbo decoder is proposed that is highly parallelisable and out-performs the maximum a-posteriori decoder  相似文献   
6.
Investigations have shown that the consequences from fires in nuclear power plants can be significant. Methodologies considering fire in probabilistic safety analyses have been evolving in the last few years. In order to provide a basis for further discussions on benefits and limits of such an analysis in Germany, current methods are investigated. As a result a qualitative screening process is proposed to identify critical fire zones followed by a quantitative event tree analysis in which the fire caused frequency of initiating events and different core damage states will be determined. The models and data proposed for a probabilistic fire risk analysis have been successfully applied in complete and partial fire risk assessments in German nuclear power plants.  相似文献   
7.
Combinatorial analysis of the minimum distance of turbo codes   总被引:2,自引:0,他引:2  
In this paper, new upper bounds on the maximum attainable minimum Hamming distance of turbo codes with arbitrary-including the best-interleavers are established using a combinatorial approach. These upper bounds depend on the interleaver length, the code rate, and the scramblers employed in the encoder. Examples of the new bounds for particular turbo codes are given and discussed. The new bounds are tighter than all existing ones and prove that the minimum Hamming distance of turbo codes cannot asymptotically grow at a rate more than the third root of the codeword length  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号