首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学工业   3篇
无线电   2篇
一般工业技术   2篇
  2013年   2篇
  2011年   2篇
  2008年   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The structure of ultrathin silicon layers obtained by molecular hydrophobic bonding is investigated. The twist and tilt angles between the two crystals are accurately controlled. The buried Si|Si interface is observed by transmission electron microscopy and by grazing incidence X-ray techniques. For low twist angle values (/spl psi/<5/spl deg/) plane view observations reveal well-defined dislocation networks. Cross-section observations give evidence that the dislocation networks are localized at the bonding interfacial plane with no threading dislocation. Grazing incidence small angle X-ray scattering measurements confirm the good quality of the bonding interface as well as the quality of the dislocation networks. Grazing incidence X-ray diffraction is also used and shows the long-range order of the periodic strain field in the silicon layer. It shows, especially, the interaction between the dislocations. X-ray reflectivity was employed and estimated that the interfacial thickness (i.e., thickness of the bonding) lower than 1 nm decreases when the twist angle increases. The nanopatterned surface is then investigated by scanning tunneling microscopy and X-ray methods. To validate these substrates for long-range order self-organization, the growth of Si and Ge quantum dots is finally achieved.  相似文献   
2.
The electrodeposition of gold colloidal nanoparticles on a silicon wafer in a uniform electric field is investigated using scanning electron microscopy and homemade electrochemical cells. Dense and uniform distributions of particles are obtained with no aggregation. The evolution of surface particle density is analyzed in relation to several parameters: applied voltage, electric field, exchanged charge. Electrical, chemical, and electrohydrodynamical parameters are taken into account in describing the electromigration process.  相似文献   
3.
In this work we have studied a way to control the growth of small diameter silicon nanowires by?the vapour-liquid-solid (VLS) mode. We have developed a method to deposit colloids with good density control, which is a key point for control of the nanowire (NW) diameter. We also show the high dependence of the allowed growth diameter on the growth conditions, opening the door to the realization of as-grown 2?nm silicon NWs. Finally we have developed a smart way to realize nanotrees in the same run, by tuning the growth conditions and using gold on the sidewall of nanowires, without the need for two catalyst deposition steps.  相似文献   
4.
In this work, nanoimprint lithography combined with standard anodization etching is used to make perfectly organised triangular arrays of vertical cylindrical alumina nanopores onto standard <100>−oriented silicon wafers. Both the pore diameter and the period of alumina porous array are well controlled and can be tuned: the periods vary from 80 to 460 nm, and the diameters vary from 15 nm to any required diameter. These porous thin layers are then successfully used as templates for the guided epitaxial growth of organised mono-crystalline silicon nanowire arrays in a chemical vapour deposition chamber. We report the densities of silicon nanowires up to 9 × 109 cm−2 organised in highly regular arrays with excellent diameter distribution. All process steps are demonstrated on surfaces up to 2 × 2 cm2. Specific emphasis was made to select techniques compatible with microelectronic fabrication standards, adaptable to large surface samples and with a reasonable cost. Achievements made in the quality of the porous alumina array, therefore on the silicon nanowire array, widen the number of potential applications for this technology, such as optical detectors or biological sensors.  相似文献   
5.
Ultrathin films of silicon bonded on 4-inch (001) silicon wafers have been obtained by combining a direct hydrophobic silicon bonding technique with a layer transfer. The strain field produced by the dislocation network localized at the bonded interface is a good candidate to induce a long-range order growth of nanostructure. To be able to make this new kind of substrate, knowledge of the dislocation strain field extension is essential. Grazing incidence X-ray diffraction allows us to measure its spatial extension through the diffraction peak satellites due to different dislocation networks. The exponential decay of these peaks were measured and compared. We found that the decrease of the strain field extension is almost two times lower for the screw dislocation network than for the ‘mixed’ dislocations one. The film thickness control is then two times more critical for the screw dislocations.  相似文献   
6.
The production and characterization of ultradense, planarized, and organized silicon nanowire arrays with good crystalline and optical properties are reported. First, alumina templates are used to grow silicon nanowires whose height, diameter, and density are easily controlled by adjusting the structural parameters of the template. Then, post-processing using standard microelectronic techniques enables the production of high-density silicon nanowire matrices featuring a remarkably flat overall surface. Different geometries are then possible for various applications. Structural analysis using synchrotron X-ray diffraction reveals the good crystallinity of the nanowires and their long-range periodicity resulting from their high-density organization. Transmission electron microscopy also shows that the nanowires can grow on nonpreferential substrate, enabling the use of this technique with universal substrates. The good geometry control of the array also results in a strong optical absorption which is interesting for their use in nanowire-based optical sensors or similar devices.  相似文献   
7.
In this paper, we present results on the fabrication of porous alumina membranes on silicon substrates with a long-range order induced by nanoimprint lithography. Fabricated porous alumina matrices present a perfect triangular array of vertical cylindrical pores on areas of 500 × 500 μm2 corresponding to the imprinted surfaces. Also, we demonstrate that it is possible to have a directed density multiplication during the pore formation, compared to the nanoimprint mold, by the initial indentation of only one third of the expected alumina pores. The gold catalyst, needed for nanowires growth, is deposited at the bottom of each pore by electrochemistry. The proposed process is scalable to wafer-scale areas, compatible with microelectronics fabrication standards and is not limited to non-fragile substrates like direct bulk aluminum nanoindentation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号