首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
无线电   5篇
  2012年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Thin-film polysilicon solar cells are a promising low-cost alternative for bulk silicon solar cells due to their reduced material thickness. Recently, we showed that the use of an amorphous silicon/polycrystalline silicon heterojunction emitter instead of a diffused homojunction emitter led to a boost in the open-circuit voltage by 90 mV. Now, we present a full evidence that shows that this improvement is related to the absence of dopant smearing along the grain boundaries. By using scanning spreading resistance microscopy, we found an enlargement of the junction area by a factor of five in case of a homojunction. The tips of the dopant spikes represent lowly doped areas with an enhanced recombination.  相似文献   
2.
We obtained 17.9% cell efficiency on thin and large mc‐Si REC wafers using ECN's metal‐wrap‐through (MWT) concept. Optimization of several cell processing steps led to an increase of more than 2% absolute in cell efficiency. With these cells 36‐cell modules were manufactured at 100% yield in our industry scale module pilot line. The highest module efficiency obtained (as independently confirmed by JRC‐ESTI) was 17%. In this module the average cell efficiency was 17.8%; this shows a small difference between cell and module efficiency. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
3.
A considerable cost reduction in photovoltaics could be achieved if efficient solar cells could be made from thin polycrystalline-silicon (pc-Si) films. Although hydrogen passivation of pc-Si films is crucial to obtain good solar cells, the exact mechanism of hydrogen diffusion through pc-Si layers is not yet understood. In this letter, the influence of the junction and the grain size are investigated. We find that the presence of a p-n junction acts as a barrier for hydrogen diffusion in thin-film polysilicon solar cells. Therefore, pc-Si solar cells should preferably be passivated before junction formation. Furthermore, pc-Si layers with large grains retain less hydrogen after passivation than layers with small grains. This indicates that hydrogen atoms get mainly trapped at the grain boundaries.  相似文献   
4.
We propose a novel approach to thin‐film silicon solar cells, namely the freestanding monocrystalline silicon layer transfer process with heterojunction emitter (FMS‐HJ). High crystallographic quality mono‐Si films were deposited on freestanding porous silicon (PS) films by chemical vapor deposition (CVD). These free‐standing mono‐Si (FMS) films were processed into solar cells by creating a‐a‐Si/c‐Si heterojunction. In our preliminary experiments a thin‐film FMS‐HJ solar cell with 9.6% efficiency was realized in a 20‐μμm‐thin active layer. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
5.
A considerable cost reduction could be achieved in photovoltaics if efficient solar cells could be made from polycrystalline‐silicon (pc‐Si) thin films on inexpensive substrates. We recently showed promising solar cell results using pc‐Si layers obtained by aluminum‐induced crystallization (AIC) of amorphous silicon in combination with thermal chemical vapor deposition (CVD). To obtain highly efficient pc‐Si solar cells, however, the material quality has to be optimized and cell processes different from those applied for standard bulk‐Si solar cells have to be developed. In this work, we present the different process steps that we recently developed to enhance the efficiency of pc‐Si solar cells on alumina substrates made by AIC in combination with thermal CVD. Our present pc‐Si solar cell process yields cells in substrate configuration with efficiencies so far of up to 8·0%. Spin‐on oxides are used to smoothen the alumina substrate surface to enhance the electronic quality of the absorber layers. The cells have heterojunction emitters consisting of thin a‐Si layers that yield much higher Voc values than classical diffused emitters. Base and emitter contacts are on top of the cell in interdigitated finger patterns, leading to fill factors above 70%. The front surface of the cells is plasma textured to increase the current density. Our present pc‐Si solar cell efficiency of 8% together with the fast progression that we have made over the last few years indicate the large potential of pc‐Si solar cells based on the AIC seed layer approach. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号