首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
化学工业   2篇
金属工艺   2篇
轻工业   1篇
无线电   4篇
一般工业技术   5篇
冶金工业   1篇
自动化技术   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2016年   1篇
  2013年   2篇
  2009年   2篇
  2008年   1篇
  2005年   1篇
  1992年   1篇
排序方式: 共有16条查询结果,搜索用时 796 毫秒
1.
2.
This paper reports the effect of the conditions of stabilization process on the properties of special polyacrylonitrile nanofibers (SAF) with an average diameter of 467 nm. Stabilization constitutes an important pretreatment for the production of either carbon fibers or activated carbon fibers. It was found that the higher the stabilization temperature, the lower the initial induction time and the total reaction time. Extent of reaction increases with both treatment time and temperature of stabilization process. Crystallinity index and crystal size of stabilized nanofibers decreases as a result of stabilization. Special polyacrylonitrile nanofibers containing itaconic acid shows a higher capability for stabilization process. Potassium permanganate as a catalyst leaves a positive effect on the extent of reaction of stabilization. The diameter of nanofibers decreases by about 20% as a result of stabilization at 250 °C. Thermally stabilized nanofiber shows a wider exothermic peak with a lower height.  相似文献   
3.
Fabrication of flexible and free‐standing graphene‐fiber‐ (GF‐) based microelectrode arrays with a thin platinum coating, acting as a current collector, results in a structure with low impedance, high surface area, and excellent electrochemical properties. This modification results in a strong synergistic effect between these two constituents leading to a robust and superior hybrid material with better performance than either graphene electrodes or Pt electrodes. The low impedance and porous structure of the GF results in an unrivalled charge injection capacity of 10.34 mC cm?2 with the ability to record and detect neuronal activity. Furthermore, the thin Pt layer transfers the collected signals along the microelectrode efficiently. In vivo studies show that microelectrodes implanted in the rat cerebral cortex can detect neuronal activity with remarkably high signal‐to‐noise ratio (SNR) of 9.2 dB in an area as small as an individual neuron.  相似文献   
4.
5.
The corrosion inhibition effect of cationic surfactants, DTAB (Dodecyl Trimethyl Ammonium Bromide) and TTAB (Tetradecyl Trimethyl Ammonium Bromide), on low carbon steel was studied using weight loss, open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) measurements. The effect of chain length compatibility on corrosion inhabitancy of surfactant and co-surfactant was investigated by C7OH (1-heptanol), C12OH (1-dodecanol) and C15OH (1-pentadecanol) as nonionic co-surfactants in acidic media at different concentrations of DTAB and TTAB. Data represented that the corrosion rate decreased by increasing concentration of DTAB and TTAB, independently. The effect of chain length compatibility on surfactant behavior was discussed. Decreasing of corrosion rate for DTAB + C12OH was more pronounced than other mixtures.  相似文献   
6.
Neutrophils, also known as polymorphonuclear leukocytes (PMNs), form a significant component of the innate host response, and the consequence of the interaction between the oral microbiota and PMNs is a crucial determinant of oral health status. The impact of radiation therapy (RT) for head and neck tumour (HNT) treatment on the oral innate immune system, neutrophils in particular, and the oral microbiome has not been thoroughly investigated. Therefore, the objective of this study was to characterize RT-mediated changes in oral neutrophils (oPMNs) and the oral microbiome in patients undergoing RT to treat HNTs. Oral rinse samples were collected prior to, during and post-RT from HNT patients receiving RT at Dental Oncology at Princess Margaret Cancer Centre. The oPMNs counts and activation states were analysed using flow cytometry, and the oral microbiome was analysed using 16S rRNA gene sequencing. Statistically significant (p < 0.05) drops in oPMN counts and the activation states of the CD11b, CD16, CD18, CD64 and H3Cit markers from pre-RT to post-RT were observed. Moreover, exposure to RT caused a significant reduction in the relative abundance of commensal Gram-negative bacteria and increased the commensal Gram-positive microbes. Ionizing radiation for the treatment of HNTs simultaneously decreased the recruitment of oPMNs into the oral cavity and suppressed their activation state. The oral microbiome composition post-RT was altered significantly due to RT which may favour the colonization of specific microbial communities unfavourable for the long-term development of a balanced oral microbiome.  相似文献   
7.
Colloidal liquid metal alloys of gallium, with melting points below room temperature, are potential candidates for creating electrically conductive and flexible composites. However, inclusion of liquid metal micro‐ and nanodroplets into soft polymeric matrices requires a harsh auxiliary mechanical pressing to rupture the droplets to establish continuous pathways for high electrical conductivity. However, such a destructive strategy reduces the integrity of the composites. Here, this problem is solved by incorporating small loading of nonfunctionalized graphene flakes into the composites. The flakes introduce cavities that are filled with liquid metal after only relatively mild press‐rolling (<0.1 MPa) to form electrically conductive continuous pathways within the polymeric matrix, while maintaining the integrity and flexibility of the composites. The composites are characterized to show that even very low graphene loadings (≈0.6 wt%) can achieve high electrical conductivity. The electrical conductance remains nearly constant, with changes less than 0.5%, even under a relatively high applied pressure of >30 kPa. The composites are used for forming flexible electrically‐conductive tracks in electronic circuits with a self‐healing property. The demonstrated application of co‐fillers, together with liquid metal droplets, can be used for establishing electrically‐conductive printable‐composite tracks for future large‐area flexible electronics.  相似文献   
8.
Alternaria alternata and Alternaria radicina are fungal species that occur in several food crops and may produce mycotoxins and phytotoxins. The toxigenic profile of A. alternata and A. radicina isolated from carrot and other umbelliferous plants was determined by growing the fungus on rice and carrot discs. Most of the tested isolates of A. alternata produced the mycotoxins tenuazonic acid, alternariol, alternariol methyl ether and altertoxin-I on rice. Only alternariol and alternariol methyl ether were produced on carrot discs. When cultured on rice, none of the isolates of A. alternata from umbelliferous plants produced AAL toxins and fumonisins. AAL toxins, but not fumonisins, were instead produced by A. alternata f. sp. lycopersici isolate NRRL 18822 isolated from tomato. A. radicina produced the phytotoxic compounds radicinin, epi-radicinol and radicinol on carrot discs, whereas it produced radicinin and radicinol on rice. Although A. alternata has been frequently found in organic carrots, none of the above mycotoxins was detected in carrot roots or in carrot commercial products. The reduction of alternariol and alternariol methyl ether during carrot juice processing at laboratory scale was estimated to be >98%. Based on these findings and previous reports, it can be concluded that Alternaria mycotoxins in carrots do not represent a hazard for consumers.  相似文献   
9.
The development of electrically conducting fibers based on known cytocompatible materials is of interest to those engaged in tissue regeneration using electrical stimulation. Herein, it is demonstrated that with the aid of rheological insights, optimized formulations of graphene containing spinnable poly(lactic‐co‐glycolic acid) (PLGA) dopes can be made possible. This helps extend the general understanding of the mechanics involved in order to deliberately translate the intrinsic superior electrical and mechanical properties of solution‐processed graphene into the design process and practical fiber architectural engineering. The as‐produced fibers are found to exhibit excellent electrical conductivity and electrochemical performance, good mechanical properties, and cellular affinity. At the highest loading of graphene (24.3 wt%), the conductivity of as‐prepared fibers is as high as 150 S m?1 (more than two orders of magnitude higher than the highest conductivity achieved for any type of nanocarbon‐PLGA composite fibers) reported previously. Moreover, the Young's modulus and tensile strength of the base fiber are enhanced 647‐ and 59‐folds, respectively, through addition of graphene.  相似文献   
10.
Room-temperature synthesis of 2D graphitic materials (2D-GMs) remains an elusive aim, especially with electrochemical means. Here, it is shown that liquid metals render this possible as they offer catalytic activity and an ultrasmooth templating interface that promotes Frank–van der Merwe regime growth, while allowing facile exfoliation due to the absence of interfacial forces as a nonpolar liquid. The 2D-GMs are formed at low onset potential and can be in situ doped depending on the choice of organic precursors and the electrochemical set-up. The materials are tuned to exhibit porous or pinhole-free morphologies and are engineered for their degree of oxidation and number of layers. The proposed liquid-metal-based room-temperature electrochemical route can be expanded to many other 2D materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号