首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
无线电   15篇
一般工业技术   2篇
自动化技术   7篇
  2020年   1篇
  2016年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   4篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2004年   2篇
  2003年   1篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
Consider a manufacturing cell of two identical CNC machines and a material handling robot. Identical parts requesting the completion of a number of operations are to be produced in a cyclic scheduling environment through a flow shop type setting. The existing studies in the literature overlook the flexibility of the CNC machines by assuming that both the allocation of the operations to the machines as well as their respective processing times are fixed. Consequently, the provided results may be either suboptimal or valid under unnecessarily limiting assumptions for a flexible manufacturing cell. The allocations of the operations to the two machines and the processing time of an operation on a machine can be changed by altering the machining conditions of that machine such as the speed and the feed rate in a CNC turning machine. Such flexibilities constitute the point of origin of the current study. The allocation of the operations to the machines and the machining conditions of the machines affect the processing times which, in turn, affect the cycle time. On the other hand, the machining conditions also affect the manufacturing cost. This study is the first to consider a bicriteria model which determines the allocation of the operations to the machines, the processing times of the operations on the machines, and the robot move sequence that jointly minimize the cycle time and the total manufacturing cost. We provide algorithms for the two 1-unit cycles and test their efficiency in terms of the solution quality and the computation time by a wide range of experiments on varying design parameters.  相似文献   
2.
Hub location problems deal with finding the location of hub facilities and with the allocation of demand nodes to these located hub facilities. In this paper, we study the single allocation hub covering problem over incomplete hub networks and propose an integer programming formulation to this end. The aim of our model is to find the location of hubs, the hub links to be established between the located hubs, and the allocation of non-hub nodes to the located hub nodes such that the travel time between any origin–destination pair is within a given time bound. We present an efficient heuristic based on tabu search and test the performance of our heuristic on the CAB data set and on the Turkish network.  相似文献   
3.
We investigate how multi‐hop routing affects the goodput and throughput performances of IEEE 802.11 distributed coordination function‐based wireless networks compared with direct transmission (single hopping), when medium access control dynamics such as carrier sensing, collisions, retransmissions, and exponential backoff are taken into account under hidden terminal presence. We propose a semi‐Markov chain‐based goodput and throughput model for IEEE 802.11‐based wireless networks, which works accurately with both multi‐hopping and single hopping for different network topologies and over a large range of traffic loads. Results show that, under light traffic, there is little benefit of parallel transmissions and both single‐hop and multi‐hop routing achieve the same end‐to‐end goodput. Under moderate traffic, concurrent transmissions are favorable as multi‐hopping improves the goodput up to 730% with respect to single hopping for dense networks. At heavy traffic, multi‐hopping becomes unstable because of increased packet collisions and network congestion, and single‐hopping achieves higher network layer goodput compared with multi‐hop routing. As for the link layer throughput is concerned, multi‐hopping increases throughput 75 times for large networks, whereas single hopping may become advantageous for small networks. The results point out that the end‐to‐end goodput can be improved by adaptively switching between single hopping and multi‐hopping according to the traffic load and topology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
4.
One of the most important design objectives in wireless sensor networks (WSN) is minimizing the energy consumption since these networks are expected to operate in harsh conditions where the recharging of batteries is impractical, if not impossible. The sleep scheduling mechanism allows sensors to sleep intermittently in order to reduce energy consumption and extend network lifetime. In applications where 100% coverage of the network field is not crucial, allowing the coverage to drop below full coverage while keeping above a predetermined threshold, i.e., partial coverage, can further increase the network lifetime. In this paper, we develop the distributed adaptive sleep scheduling algorithm (DASSA) for WSNs with partial coverage. DASSA does not require location information of sensors while maintaining connectivity and satisfying a user defined coverage target. In DASSA, nodes use the residual energy levels and feedback from the sink for scheduling the activity of their neighbors. This feedback mechanism reduces the randomness in scheduling that would otherwise occur due to the absence of location information. The performance of DASSA is compared with an integer linear programming (ILP) based centralized sleep scheduling algorithm (CSSA), which is devised to find the maximum number of rounds the network can survive assuming that the location information of all sensors is available. DASSA is also compared with the decentralized DGT algorithm. DASSA attains network lifetimes up to 92% of the centralized solution and it achieves significantly longer lifetimes compared with the DGT algorithm.  相似文献   
5.
Performance of WDM transport networks   总被引:19,自引:0,他引:19  
Wavelength division multiplexed point-to-point transport is becoming commonplace in wide area networks. With the expectation that the next step is end-to-end networking of wavelengths (in the optical domain without conversion to electronics), there is a need for new design techniques, a new understanding of the performance issues, and a new performance evaluation methodology in such networks. This paper describes approaches to that end, summarizes research results, and points to open problems  相似文献   
6.
Wavelength-division multiplexing (WDM) technology is emerging as the transmission and switching mechanism for future optical mesh networks. In these networks it is desired that a wavelength can be routed without electrical conversions. Two technologies are possible for this purpose: wavelength selective cross-connects (WSXC) and wavelength interchanging cross-connects (WIXC), which involve wavelength conversion. It is believed that wavelength converters may improve the blocking performance, but there is a mix of results in the literature on the amount of this performance enhancement. We use two metrics to quantify the wavelength conversion gain: the reduction in blocking probability and the increase in maximum utilization, compared to a network without converters. We study the effects of wavelength routing and selection algorithms on these measures for mesh networks. We use the overflow model to analyze the blocking probability for wavelength-selective (WS) mesh networks using the first-fit wavelength assignment algorithm. We propose a dynamic routing and wavelength selection algorithm, the least-loaded routing (LLR) algorithm, which jointly selects the least-loaded route-wavelength pair. In networks both with and without wavelength converters the LLR algorithm achieves much better blocking performance compared to the fixed shortest path routing algorithm. The LLR produces larger wavelength conversion gains; however, these large gains are not realized in sufficiently wide utilization regions and are diminished with the increased number of fibers  相似文献   
7.
We discuss the problem of designing translucent optical networks composed of restorable, transparent subnetworks interconnected via transponders. We develop an integer linear programming (ILP) formulation for partitioning an optical network topology into subnetworks, where the subnetworks are determined subject to the constraints that each subnetwork satisfies size limitations, and it is two-connected. A greedy heuristic partitioning algorithm is proposed for planar network topologies. We use section restoration for translucent networks where failed connections are rerouted within the subnetwork which contains the failed link. The network design problem of determining working and restoration capacities with section restoration is formulated as an ILP problem. Numerical results show that fiber costs with section restoration are close to those with path restoration for mesh topologies used in this study. It is also shown that the number of transponders with the translucent network architecture is substantially reduced compared to opaque networks.  相似文献   
8.
This paper considers the scheduling problems arising in two- and three-machine manufacturing cells configured in a flowshop which repeatedly produces one type of product and where transportation of the parts between the machines is performed by a robot. The cycle time of the cell is affected by the robot move sequence as well as the processing times of the parts on the machines. For highly flexible CNC machines, the processing times can be changed by altering the machining conditions at the expense of increasing the manufacturing cost. As a result, we try to find the robot move sequence as well as the processing times of the parts on each machine that not only minimize the cycle time but, for the first time in robotic cell scheduling literature, also minimize the manufacturing cost. For each 1-unit cycle in two- and three-machine cells, we determine the efficient set of processing time vectors such that no other processing time vector gives both a smaller cycle time and a smaller cost value. We also compare these cycles with each other to determine the sufficient conditions under which each of the cycles dominates the rest. Finally, we show how different assumptions on cost structures affect the results.  相似文献   
9.
We propose and analyze layered switch architectures that possess high design flexibility, greatly reduced switch size, and high expandability. The improvement in loss and crosstalk due to the reduced switch size is also discussed. Theoretical models have been developed to compute the network blocking probability using these architectures. Low blocking probability and high network utilization are achieved because of the capability of communication between layers in adjacent switches. The results show that the proposed layered switch architectures are very attractive for high-capacity optical transport networks  相似文献   
10.
With this paper, we propose a distributed online traffic engineering architecture formpls networks. In this architecture, a primary and secondarympls lsp are established from an ingresslsr to every other egresslsr. We propose to split thetcp traffic between the primary and secondary paths using a distributed mechanism based onecn marking andaimd-based rate control. Inspired by the random early detection mechanism for active queue management, we propose a random early reroute scheme to adaptively control the delay difference between the primary and secondarylsps. Considering the adverse effect of packet reordering ontcp performance for packet-based load balancing schemes, we propose that thetcp splitting mechanism operates on a per-flow basis. Using flow-based models developed for Internet traffic and simulations, we show that flow-based distributed multi-path traffic engineering outperforms on a consistent basis the case of a single path in terms of per-flow goodputs. Due to the elimination of out-of-order packet arrivals, flow-based splitting also enhancestcp performance with respect to packet-based splitting especially for longtcp flows that are hit hard by packet reordering. We also compare and contrast two queuing architectures for differential treatment of data packets routed over primary and secondarylsps in thempls data plane, namely first-in-first-out and strict priority queuing. We show through simulations that strict priority queuing is more effective and relatively more robust with respect to the changes in the traffic demand matrix than first-in-first-out queuing in the context of distributed multi-path routing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号