首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
金属工艺   1篇
无线电   2篇
冶金工业   1篇
自动化技术   17篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
Caches impose a major problem for predicting execution times of real-time systems since the cache behavior depends on the history of previous memory references. Too pessimistic assumptions on cache hits can obtain worst-case execution time estimates that are prohibitive for real-time systems. This paper presents a novel approach for deriving a highly accurate analytical cache hit function for C-programs at compile-time based on the assumption that no external cache interference (e.g. process dispatching or DMA activity) occurs. First, a symbolic tracefile of an instrumented C-program is generated based on symbolic evaluation, which is a static technique to determine the dynamic behavior of programs. All memory references of a program are described by symbolic expressions and recurrences and stored in chronological order in the symbolic tracefile. Second, a cache hit function for several cache architectures is computed based on a cache evaluation technique. Our approach goes beyond previous work by precisely modelling program control flow and program unknowns, modelling large classes of cache architectures, and providing very accurate cache hit predictions. Examples for the SPARC architecture are used to illustrate the accuracy and effectiveness of our symbolic cache prediction.  相似文献   
2.
Scientific workflows are a topic of great interest in the grid community that sees in the workflow model an attractive paradigm for programming distributed wide-area grid infrastructures. Traditionally, the grid workflow execution is approached as a pure best effort scheduling problem that maps the activities onto the grid processors based on appropriate optimization or local matchmaking heuristics such that the overall execution time is minimized. Even though such heuristics often deliver effective results, the execution in dynamic and unpredictable grid environments is prone to severe performance losses that must be understood for minimizing the completion time or for the efficient use of high-performance resources. In this paper, we propose a new systematic approach to help the scientists and middleware developers understand the most severe sources of performance losses that occur when executing scientific workflows in dynamic grid environments. We introduce an ideal model for the lowest execution time that can be achieved by a workflow and explain the difference to the real measured grid execution time based on a hierarchy of performance overheads for grid computing. We describe how to systematically measure and compute the overheads from individual activities to larger workflow regions and adjust well-known parallel processing metrics to the scope of grid computing, including speedup and efficiency. We present a distributed online tool for computing and analyzing the performance overheads in real time based on event correlation techniques and introduce several performance contracts as quality-of-service parameters to be enforced during the workflow execution beyond traditional best effort practices. We illustrate our method through postmortem and online performance analysis of two real-world workflow applications executed in the Austrian grid environment.  相似文献   
3.
In order to improve a parallel program's performance it is critical to evaluate how even the work contained in a program is distributed over all processors dedicated to the computation. Traditional work distribution analysis is commonly performed at the machine level. The disadvantage of this method is that it cannot identify whether the processors are performing useful or redundant (replicated) work. The paper describes a novel method of statically estimating the useful work distribution of distributed-memory parallel programs at the program level, which carefully distinguishes between useful and redundant work. The amount of work contained in a parallel program, which correlates with the number of loop iterations to be executed by each processor, is estimated by accurately modeling loop iteration spaces, array access patterns and data distributions. A cost function defines the useful work distribution of loops, procedures and the entire program. Lower and upper bounds of the described parameter are presented. The computational complexity of the cost function is independent of the program's problem size, statement execution and loop iteration counts. As a consequence, estimating the work distribution based on the described method is considerably faster than simulating or actually compiling and executing the program. Automatically estimating the useful work distribution is fully implemented as part of P3T, which is a static parameter based performance prediction tool under the Vienna Fortran Compilation System (VFCS). The Lawrence Livermore Loops are used as a test case to verify the approach.  相似文献   
4.
While existing work concentrates on developing QoS models of business workflows and Web services, few tools have been developed to support the monitoring and performance analysis of scientific workflows in Grids. This paper describes novel Grid services for dynamic instrumentation of Grid-based applications, performance monitoring and analysis of Grid scientific workflows. We describe a Grid dynamic instrumentation service that provides a widely accessible interface for other services and users to conduct the dynamic instrumentation of Grid applications during the runtime. We introduce a Grid performance analysis service for Grid scientific workflows. The analysis service utilizes various types of data including workflow graphs, monitoring data of resources, execution status of activities, and performance measurements obtained from the dynamic instrumentation of invoked applications, and provides a rich set of functionalities and features to support the online monitoring and performance analysis of scientific workflows. Workflows and their relevant information including performance metrics are stored and utilized for comparing the performance of constructs of different workflows and for supporting multi-workflow analysis. The work described in this paper is supported in part by the Austrian Science Fund as part of the Aurora Project under contract SFBF1104 and by the European Union through the IST-2002-511385 project K-WfGrid.  相似文献   
5.
6.
Early studies of the echidna led to the conclusion that this monotreme did not have rapid eye movement (REM) sleep. Because the monotremes had diverged from the placental and marsupial lines very early in mammalian evolution, this finding was used to support the hypothesis that REM sleep evolved after the start of the mammalian line. The current paper summarizes our recent work on sleep in the echidna and platypus and leads to a very different interpretation. By using neuronal recording from mesopontine regions in the echidna, we found that despite the presence of a high-voltage cortical electroencephalogram (EEG), brainstem units fire in irregular bursts intermediate in intensity between the regular non-REM sleep pattern and the highly irregular REM sleep pattern seen in placentals. Thus the echidna displays brainstem activation during sleep with high-voltage cortical EEG. This work encouraged us to do the first study of sleep, to our knowledge, in the platypus. In the platypus we saw sleep with vigorous rapid eye, bill and head twitching, identical in behaviour to that which defines REM sleep in placental mammals. Recording of the EEG in the platypus during natural sleep and waking states revealed that it had moderate and high-voltage cortical EEGs during this REM sleep state. The platypus not only has REM sleep, but it had more of it than any other animal. The lack of EEG voltage reduction during REM sleep in the platypus, and during the REM sleep-like state of the echidna, has some similarity to the sleep seen in neonatal sleep in placentals. The very high amounts of REM sleep seen in the platypus also fit with the increased REM sleep duration seen in altricial mammals. Our findings suggest that REM sleep originated earlier in mammalian evolution than had previously been thought and is consistent with the hypothesis that REM sleep, or a precursor state with aspects of REM sleep, may have had its origin in reptilian species.  相似文献   
7.
International Journal of Parallel Programming - Providing convenient APIs and notations for data parallelism which remain accessible for programmers while still providing good performance has been...  相似文献   
8.
Debuggers play an important role in developing parallel applications. They are used to control the state of many processes, to present distributed information in a concise and clear way, to observe the execution behavior, and to detect and locate programming errors. More sophisticated debugging systems also try to improve understanding of global execution behavior and intricate details of a program. In this paper we describe the design and implementation of SPiDER, which is an interactive source‐level debugging system for both regular and irregular High‐Performance Fortran (HPF) programs. SPiDER combines a base debugging system for message‐passing programs with a high‐level debugger that interfaces with an HPF compiler. SPiDER, in addition to conventional debugging functionality, allows a single process of a parallel program to be expected or the entire program to be examined from a global point of view. A sophisticated visualization system has been developed and included in SPiDER to visualize data distributions, data‐to‐processor mapping relationships, and array values. SPiDER enables a programmer to dynamically change data distributions as well as array values. For arrays whose distribution can change during program execution, an animated replay displays the distribution sequence together with the associated source code location. Array values can be stored at individual execution points and compared against each other to examine execution behavior (e.g. convergence behavior of a numerical algorithm). Finally, SPiDER also offers limited support to evaluate the performance of parallel programs through a graphical load diagram. SPiDER has been fully implemented and is currently being used for the development of various real‐world applications. Several experiments are presented that demonstrate the usefulness of SPiDER. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
9.
Today there exist a wide variety of scientific workflow management systems, each designed to fulfill the needs of a certain scientific community. Unfortunately, once a workflow application has been designed in one particular system it becomes very hard to share it with users working with different systems. Portability of workflows and interoperability between current systems barely exists. In this work, we present the fine-grained interoperability solution proposed in the SHIWA European project that brings together four representative European workflow systems: ASKALON, MOTEUR, WS-PGRADE, and Triana. The proposed interoperability is realised at two levels of abstraction: abstract and concrete. At the abstract level, we propose a generic Interoperable Workflow Intermediate Representation (IWIR) that can be used as a common bridge for translating workflows between different languages independent of the underlying distributed computing infrastructure. At the concrete level, we propose a bundling technique that aggregates the abstract IWIR representation and concrete task representations to enable workflow instantiation, execution and scheduling. We illustrate case studies using two real-workflow applications designed in a native environment and then translated and executed by a foreign workflow system in a foreign distributed computing infrastructure.  相似文献   
10.
Examining the Challenges of Scientific Workflows   总被引:3,自引:0,他引:3  
Workflows have emerged as a paradigm for representing and managing complex distributed computations and are used to accelerate the pace of scientific progress. A recent National Science Foundation workshop brought together domain, computer, and social scientists to discuss requirements of future scientific applications and the challenges they present to current workflow technologies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号