首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   0篇
电工技术   2篇
轻工业   3篇
无线电   77篇
自动化技术   14篇
  2022年   1篇
  2021年   1篇
  2014年   1篇
  2013年   5篇
  2011年   3篇
  2010年   3篇
  2009年   6篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   5篇
  2004年   4篇
  2003年   8篇
  2002年   3篇
  2001年   7篇
  2000年   3篇
  1999年   6篇
  1998年   6篇
  1995年   5篇
  1994年   1篇
  1993年   5篇
  1992年   1篇
  1991年   3篇
  1990年   5篇
  1989年   1篇
  1987年   1篇
排序方式: 共有96条查询结果,搜索用时 31 毫秒
1.
Memory cost is responsible for a large amount of the chip and/or board area of customized video and image processing system realizations. In this paper, we present a novel technique-founded on data-flow analysis which allows one to address the problem of background memory size evaluation for a given nonprocedural algorithm specification, operating on multidimensional signals with affine indexes. Most of the target applications are characterized by a huge number of signals, so a new polyhedral data-flow model operating on groups of scalar signals is proposed. These groups are obtained by a novel analytical partitioning technique, allowing to select a desired granularity, depending on the application complexity. The method incorporates a way to tradeoff memory size with computational and controller complexity  相似文献   
2.
Abstract: Managing multiple ontologies is now a core question in most of the applications that require semantic interoperability. The semantic web is surely the most significant application of this report: the current challenge is not to design, develop and deploy domain ontologies but to define semantic correspondences among multiple ontologies covering overlapping domains. In this paper, we introduce a new approach of ontology matching named axiom-based ontology matching. As this approach is founded on the use of axioms, it is mainly dedicated to heavyweight ontologies, but it can also be applied to lightweight ontologies as a complementary approach to the current techniques based on the analysis of natural language expressions, instances and/or taxonomical structures of ontologies. This new matching paradigm is defined in the context of the conceptual graphs model, where the projection (i.e. the main operator for reasoning with conceptual graphs which corresponds to homomorphism of graphs) is used as a means to semantically match the concepts and the relations of two ontologies through the explicit representation of the axioms in terms of conceptual graphs. We also introduce an ontology of representation, called MetaOCGL, dedicated to the reasoning of heavyweight ontologies at the meta-level.  相似文献   
3.
Memory latency has always been a major issue in embedded systems that execute memory-intensive applications. This is even more true as the gap between processor and memory speed continues to grow. Hardware and software prefetching have been shown to be effective in tolerating the large memory latencies inherit in large off-chip memories; however, both types of prefetching have their shortcomings. Hardware schemes are more complex and require extra circuitry to compute data access strides, while software schemes generate prefetch instructions, which if not computed carefully may hamper performance. On the other hand, some applications domains (such as multimedia) have a uniform and known a priori memory access pattern, that if exploited, could yield significant application performance improvement. With this characteristic in mind, we present our findings on hiding memory latency using the direct memory access (DMA) mode, which is present in all modern systems, combined with a software prefetch mechanism, and a customized on-chip memory hierarchy mapping. Compared to previous approaches, we are able to estimate the performance and power metrics, without actually implementing the embedded system. Experimental results on nine well known multimedia and imaging applications prove the efficiency of our technique. Finally, we verify the performance estimations by implementing and simulating the algorithms on the TI C6201 processor.  相似文献   
4.
Multimedia application design exploration should begin at the system level, to meet low-power and minimum-area requirements. Existing validation techniques mainly concentrate on lower abstraction levels. This system-level methodology combines formal verification of loop-oriented transformations with correctness verification of arithmetic constructs and related control flows. A videoconferencing-decoder example illustrates the methodology's efficiency.  相似文献   
5.
MATISSE is a design environment intended for developing systems characterized by a tight interaction between control and data-flow behavior, intensive data storage and transfer, and stringent real-time requirements. Matisse bridges the gap from a system specification, using a concurrent object-oriented language, to an optimized embedded single-chip hardware/software implementation. Matisse supports stepwise exploration and refinement of dynamic memory management, memory architecture exploration, and gradual incorporation of timing constraints before going to traditional tools for hardware synthesis, software compilation, and inter-processor communication synthesis. With this approach, specifications of embedded systems can be written in a high-level programming language using data abstraction. Application of MATISSE on telecom protocol processing systems in the ATM area shows significant improvements in area usage and power consumption.  相似文献   
6.
The flexibility and programmability of SDR come at the expense of reduced efficiency and increased energy consumption. This is usually considered as the penalty of SDR. However, the flexibility and programmability have great potentials for improving the system-wide efficiency if they are properly exploited. In this paper, we present a HSDPA chip equalizer that is explicitly designed for SDR implementations. The first SDR-specific feature of our work is the multi-mode operation based on heterogeneous algorithms. The proposed equalizer combines an optimized LMS variant (with subspace-aware extension) and an optimized SRI-RLS algorithm based on QRD. Instead of always applying the powerful SRI-RLS algorithm, the equalizer switches to simple LMS-variant when possible. With negligible BER degradation, the multi-mode operation can reduce 60% of the cycle-count on TI TMS320C6713 for 3GPP case 4 with 16QAM modulation. The proposed equalizer framework also incorporates a generic, robust and efficient scheme for equalization-length adaptation. The length-adaptation scheme can make very fast run-time decision based on an efficient policy-template, which is optimized with large training set at design time. We test 14 representative channel profiles specified in ITU-R M.1225, 3GPP TR 25.943 and 3GPP TS 25.101. Comparing to worst-case based design the length-adaptation achieves more than 10× cycle-count reductions for ten of the cases.  相似文献   
7.
8.
In the context of future dynamic applications, systems will exhibit unpredictably varying platform resource requirements. To deal with this, they will not only need to be programmable in terms of instruction set processors, but also at least partial reconfigurability will be required. In this context, it is important for applications to optimally exploit the memory hierarchy under varying memory availability. This article presents a mapping strategy for wavelet-based applications: depending on the encountered conditions, it switches to different memory optimized instantations or localizations, permitting up to 51% energy gains in memory accesses. Systematic and parameterized mapping guidelines indicate which localization should be selected when, for varying algorithmic wavelet parameters. The results have been formalized and generalized to be applicable to more general wavelet-based applications.  相似文献   
9.
Green Reconfigurable Radio Systems   总被引:1,自引:0,他引:1  
The wireless standards scene and its evolution strengthens the need for functional flexibility in future radios. Multimode terminals supporting an increasingly large variety of standards (cellular, WLANs, WMANs, WPANs) are subject to a cost increase that is addressed by more flexible radio interfaces. Energy efficiency, however, is the main obstacle to successfully deploying such reconfigurable radios. To address this, it is essential to design energy-scalable SDRs, both for the radio front-end and the digital baseband platform. Complementing this, an essential ingredient is an intelligent controller that optimally exploits this scalability and the run-time dynamics to translate potential energy scalability to actual low-power operation. To realize this goal, an energy-aware cross-layer radio management framework is introduced. It was instantiated in different case studies, showing the applicability of this approach in realistic setups. Results have shown that substantial gains can be achieved through effective cross-layer optimization and problem partitioning. Next, it was shown that SDRs will play a crucial role in enabling CRs, which will enable saving on both the scarce radio spectrum and battery lifetime. A key building block for the design of such CRs, i.e., the appropriate control intelligence to make the SDR platform cognitive, can be derived by incrementally building on the proposed framework. As a result, green (or environment friendly) reconfigurable radio systems will emerge, which offer a wide variety and ubiquitous availability of wireless services, while overcoming energy and spectrum scarcity  相似文献   
10.
The fast pacing diversity and evolution of wireless communications require a wide variety of baseband implementations within a short time-to-market. Besides, the exponentially increased design complexity and design cost of deep sub-micron silicon highly desire the designs to be reused as much as possible. This yields an increasing demand for reconfigurable/ programmable baseband solutions. Implementing all baseband functionalities on programmable architectures, as foreseen in the tier-2 SDR, will become necessary in the future. However, the energy efficiency of SDR baseband platforms is a major concern. This brings a challenging gap that is continuously broadened by the exploding baseband complexity. We advocate a system level approach to bridge the gap. Specifically, we fully leverage the advantages (programmability) of SDR platforms to compensate its disadvantages (energy efficiency). Highly flexible and dynamic baseband signal processing algorithms are designed and implemented to exploit the abundant dynamics in the environment and the user requirement. Instead of always performing the best effort, the baseband can dynamically and autonomously adjust its work load to optimize the average energy consumption. In this paper, we will introduce such baseband signal processing techniques optimized for SDR implementations. The methodology and design steps will be presented together with 3 representative case studies in HSDPA, WiMAX and 3GPP LTE.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号