首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
机械仪表   1篇
一般工业技术   6篇
  2018年   1篇
  2011年   1篇
  2010年   1篇
  2008年   4篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
Chen L  Lu TM  Wang GC 《Nanotechnology》2011,22(50):505701
A class of nanostructured Mo thin films was grown by DC magnetron sputtering using a robust substrate rotation mode called 'flipping rotation'. In this rotation mode, the substrate is arranged to rotate continuously at a fixed speed around an axis lying within and parallel to the substrate. The incident flux is perpendicular to the rotational axis, and the incident flux angle changes continuously. Mo nanostructured films, grown under different rotation speeds with three orders of magnitude spread (ranging from 0.008 to 24?rotation?min( - 1)), different flipping directions (clockwise and counter-clockwise), and different ending deposition angles, were characterized using scanning electron microscopy (SEM) and reflection high energy electron diffraction (RHEED) surface-pole-figure techniques. Despite their very different morphologies, such as 'C'-shaped, 'S'-shaped, and vertically aligned nanorods, the same [Formula: see text] biaxial texture with an average out-of-plane dispersion of ~ 15° was observed. In contrast, we showed that only a fiber-textured Mo film was obtained by using the conventional rotation mode where the oblique incident flux angle was fixed with the substrate rotating around the surface normal.  相似文献   
2.
Gaire C  Snow P  Chan TL  Yuan W  Riley M  Liu Y  Zhang SB  Wang GC  Lu TM 《Nanotechnology》2010,21(44):445701
The morphology and biaxial texture of vacuum evaporated CaF(2) films on amorphous substrates as a function of vapour incident angle, substrate temperature and film thickness were investigated by scanning electron microscopy, x-ray pole figure and reflection high energy electron diffraction surface pole figure analyses. Results show that an anomalous [220] out-of-plane texture was preferred in CaF(2) films deposited on Si substrates at < 200?°C with normal vapour incidence. With an increase of the vapour incident angle, the out-of-plane orientation changed from [220] to [111] at a substrate temperature of 100?°C. In films deposited with normal vapour incidence, the out-of-plane orientation changed from [220] at 100?°C to [111] at 400?°C. In films deposited with an oblique vapour incidence at 100?°C, the texture changed from random at small thickness (5 nm) to biaxial at larger thickness (20 nm or more). Using first principles density functional theory calculation, it was shown that [220] texture formation is a consequence of energetically favourable adsorption of CaF(2) molecules onto the CaF(2)(110) facet.  相似文献   
3.
Tang F  Parker T  Li HF  Wang GC  Lu TM 《Nanotechnology》2008,19(46):465706
We present hydrogenation/de-hydrogenation properties of ultrathin Mg nanoblades coated with Pd as a catalyst. The hydrided Pd/Mg/Pd and Pd/Mg nanoblades were highly curved as observed by ex situ scanning electron microscopy. An in situ thermal desorption spectroscopy (TDS) study showed that the hydrided Pd/Mg/Pd nanostructure has a low hydrogen desorption temperature, at ~365?K. Through a combinational microstructure and TDS analysis of hydrided Pd/Mg/Pd nanoblades as well as hydrided Pd/Mg/Pd nanoblades covered with an additional ultrathin Mg layer, we found that the effect of Pd catalyst on reducing the hydrogen desorption temperature is significantly stronger than the conventionally proposed mechanisms due to grain size and strain.  相似文献   
4.
We report the fabrication of vertically aligned ultrafine ZnO nanorods using metal-organic vapor phase epitaxy and applying a two-temperature growth method. First, thick nanorods were grown vertically on the substrate at a lower temperature. Then, ultrafine ZnO nanorods with an average diameter of 17.7?nm were grown from the tips of the thick nanorods at a higher temperature. The direction of the ultrafine ZnO nanorods followed that of the preformed vertically aligned thick nanorods. Electron microscopy revealed that the ultrafine nanorods were single crystals and the growth direction was along the c axis. Excellent photoluminescence characteristics of the nanorods were confirmed.  相似文献   
5.
The surface micro/nano-topographical modifications have been widely used in improving the biocompatibility of biomedical implants. In this paper, the feasibility of the micro-milling process for construction of micro-grooves without burrs on titanium alloy materials was investigated. Low melting point alloy was selected as supporting material to extend the boundary of the workpiece, so the burrs produced on the surface of supporting material. A novel hierarchical micro/nano-topography with micro-grooves and TiO2 nanotubes was fabricated on titanium alloy surface combining micro-milling and anodic oxidation. The scanning electron microscope, energy-dispersive spectroscopy, laser scanning microscope, and contact angle tester were used in characterizing surface features of machined workpieces. Results showed that the micro-grooves with dimension of 40 μm in depth were machined using V-shaped cutting tool, and the TiO2 nanotubes with dimension of 70 nm in diameter were superimposed on the surfaces of micro-grooves by anodic oxidation. In addition, the hydrophilicity of micro/nano-structured surface was significantly enhanced with the water contact angle decreasing from 114.8° to 60.3°. It is concluded that this hybrid method combining micro-milling technology and anodic oxidation can be used in improving the biological activity of biomedical implants through changing surface topographies.  相似文献   
6.
In this work we present the first magnetoresistance measurements on multilayered vertical Co(~6?nm)/Cu(~6?nm) and slanted Co(x?nm)/Cu(x?nm) (with x≈6, 11, and 16?nm) nanocolumns grown by oblique angle vapour deposition. The measurements are performed at room temperature on the as-deposited nanocolumn samples using a scanning tunnelling microscope to establish electronic contact with a small number of nanocolumns while an electromagnet generates a time varying (0.1?Hz) magnetic field in the plane of the substrate. The samples show a giant magnetoresistance (GMR) response ranging from 0.2 to 2%, with the higher GMR values observed for the thinner layers. For the slanted nanocolumns, we observed anisotropy in the GMR with respect to the relative orientation (parallel or perpendicular) between the incident vapour flux and the magnetic field applied in the substrate plane. We explain the anisotropy by noting that the column axis is the magnetic easy axis, so the magnetization reversal occurs more easily when the magnetic field is applied along the incident flux direction (i.e., nearly along the column axis) than when the field is applied perpendicular to the incident flux direction.  相似文献   
7.
Li HF  Kar AK  Parker T  Wang GC  Lu TM 《Nanotechnology》2008,19(33):335708
We report the creation of unusual biaxial textures in Cu nanorod films, through the control of the incident vapor flux during oblique angle deposition. High-density twin boundaries were formed using a periodic azimuthal swing rotation of the substrate while the incident angle of the Cu flux was fixed at 85° with respect to the surface normal. In contrast, depositions on stationary substrates resulted in nanorod films with a much lower density of twinned crystals. From transmission electron microscopy and x-ray pole figure analysis, the nanorod axis was shown to coincide approximately with the [Formula: see text] crystallographic directions. We also observed the branching of these nanostructures into 'nanotrees'. This branching was attributed to the creation of edge dislocations during the deposition and was particularly prevalent for the case of swing rotation. The mechanisms for the development of texture, twinning, and branching in these nanostructures are discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号