首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
无线电   4篇
  2015年   1篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
The design of Ka-band satellite fade countermeasure (FCM) systems is conditioned by the detection/prediction algorithm to be included within practical DSP-based FCM controllers. It depends upon the ability of systems to efficiently integrate the dynamic and stochastic nature of the Ka-band fading process which is dominated by rain attenuation and amplitude scintillation. The paper analyzes the modeling and statistical performance of two predictive fade detection algorithms. Prediction is introduced as a way to minimize the impact of the finite response time on the BER/throughput of practical FCM systems. Both fixed (FDM) and variable (VDM) detection margin strategies are introduced and compared in terms of their margin requirements, FCM utilization factor, and channel capacity utilization. The VDM is shown to be more efficient than its fixed counterpart. The long-term BER availability and average user data throughput of a VDM/fixed-FEC/adaptive transmission rate FCM are then evaluated for a typical low-power low-rate Ka-band in-bound VSAT link  相似文献   
2.
3.
4.
Broadband satellite communication networks, operating at Ka band and above, play a vital role in today's worldwide telecommunication infrastructure. The problem, however, is that rain can be the most dominant impairment factor for radio propagation above 10 GHz. This paper studies bandwidth and time slot allocation problem for rain faded DVB‐RCS satellite networks. We investigate how using finer rain granularity can improve bandwidth utilization in DVB‐RCS return links. The paper presents a mathematical model to calculate the bandwidth on demand. We formulate the radio resource allocation as an optimization problem and propose a novel algorithm for dynamic carrier bandwidth and time slots allocation, which works with constant bit rate type of traffic. We provide theoretical analysis for the time slot allocation problem and show that the proposed algorithm achieves optimal results. The algorithm is evaluated using a MATLAB simulation with historical rain data for the UK. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号