首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学工业   3篇
建筑科学   1篇
能源动力   1篇
水利工程   1篇
无线电   1篇
一般工业技术   2篇
  2022年   3篇
  2021年   1篇
  2018年   3篇
  2017年   1篇
  2009年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Using Monte Carlo simulations, we are studying the magnetic properties of Fe-doped CuO thin films. The total magnetizations and the susceptibilities are studied as a function of the effect doping, external magnetic field, and exchange coupling. The critical temperature is discussed as a function of the effect of iron concentration. On the other hand, we investigate the effect of increasing temperatures on the coercive field for a constant value of exchange coupling and a fixed concentration. The coercive magnetic field is found to decrease with increasing temperature values until reaching its null value. The effect of increasing the exchange coupling amount on the saturation magnetic field H s is illustrated. A linear growth of the saturation magnetic field is found as a function of the exchange coupling interaction. To complete this study, we presented and discussed the magnetic hysteresis cycle loops.  相似文献   
2.
This review accounts for the most recent and significant research results from the literature on the design and synthesis of 1,2,3-triazole compounds and their usefulness as molecular well-defined corrosion inhibitors for steels, copper, iron, aluminum, and their alloys in several aggressive media. Of particular interest are the 1,4-disubstituted 1,2,3-triazole derivatives prepared in a regioselective manner under copper-catalyzed azide-alkyne cycloaddition (CuAAC) click reactions. They are easily and straightforwardly prepared compounds, non-toxic, environmentally friendly, and stable products to the hydrolysis under acidic conditions. Moreover, they have shown a good efficiency as corrosion inhibitors for metals and their alloys in different acidic media. The inhibition efficiencies (IEs) are evaluated from electrochemical impedance spectroscopy (EIS) parameters with different concentrations and environmental conditions. Mechanistic aspects of the 1,2,3-triazoles mediated corrosion inhibition in metals and metal alloy materials are also overviewed.  相似文献   
3.
Climate change may have strong impacts on water resources in developing countries. In North Africa, many dams and reservoirs have been built to secure water availability in the context of a strong inter-annual variability of precipitation. The goal of this study is to evaluate climate change impacts on surface water resources for the largest dams in Algeria, Morocco and Tunisia using high-resolution (12 km) regional climate models (RCM) simulations. To evaluate the atmospheric demand (evapotranspiration), two approaches are compared: The direct use of actual evaporation simulated by the RCMs, or estimation of reference evapotranspiration computed with the Hargreaves-Samani (HAR) equation, relying on air temperature only, and the FAO-Penman Monteith (PM) equation, computed with temperature, wind, radiation and relative humidity. Results showed a strong convergence of the RCM simulations towards increased temperature and a decrease in precipitation, in particular during spring and the western part of North Africa. A decrease in actual evapotranspiration, highly correlated to the decrease in precipitations, is observed throughout the study area. On the opposite, an increase in reference evapotranspiration is observed, with similar changes between HAR and PM equations, indicating that the main driver of change is the temperature increase. Since the catchments are rather water-limited than energy-limited, despite opposite projections for actual and reference evapotranspiration a decrease of water availability is projected for all basins under all scenarios, with a strong east-to-west gradient. The projected decrease is stronger when considering reference evapotranspiration rather than actual evaporation. These pessimistic future projections are an incentive to adapt the current management of surface water resources to future climatic conditions.  相似文献   
4.
This study investigates the thermal energy potentials and economic feasibility of an air-conditioned family household-integrated phase change material (PCM) considering different climate zones in Morocco. A simulation-based optimisation was carried out in order to define the optimal design of a PCM-enhanced household envelope for thermal energy effectiveness and cost-effectiveness of predefined candidate solutions. The optimisation methodology is based on coupling Energyplus® as a dynamic simulation tool and GenOpt® as an optimisation tool. Considering the obtained optimum design strategies, a thermal energy and economic analysis are carried out to investigate PCMs’ integration feasibility in the Moroccan constructions. The results show that the PCM-integrated household envelope allows minimising the cooling/heating thermal energy demand vs. a reference household without PCM. While for the cost-effectiveness optimisation, it has been deduced that the economic feasibility is stilling insufficient under the actual PCM market conditions. The optimal design parameters results are also analysed.  相似文献   
5.
The main goal of this paper is to illustrate a geometric analysis of 3D facial shapes in the presence of varying facial expressions. This approach consists of the following two main steps: (1) Each facial surface is automatically denoised and preprocessed to result in an indexed collection of facial curves. During this step, one detects the tip of the nose and defines a surface distance function with that tip as the reference point. The level curves of this distance function are the desired facial curves. (2) Comparisons between faces are based on optimal deformations from one to another. This, in turn, is based on optimal deformations of the corresponding facial curves across surfaces under an elastic metric. The experimental results, generated using a subset of the Face Recognition Grand Challenge v2 data set, demonstrate the success of the proposed framework in recognizing people under different facial expressions. The recognition rates obtained here exceed those for a baseline ICP algorithm on the same data set.  相似文献   
6.
Energy efficiency improvement in building sector has become a real challenge in Morocco, especially in the northern region evolving a rapid urban growth. In this context, using the phase change materials (PCM) in the construction is presented as one of the promising solutions to enhance the thermal behaviour of building envelope. This work aims to investigate the thermal performance of a PCM integrated external wall and roof under the summer climate conditions of northern Morocco. Dynamic thermal characterization methodology is adopted through the calculation of decrement factor (DF) and time lag (TL) parameters. For that, a one-dimensional numerical model based on resistance–capacitance (RC) approach is developed and implicitly solved to simulate the heat transfer process through a wall/roof structure. The model is validated through a new small-scale experimental device. Different qualities of PCM, regarding its peak phase change temperature, have been evaluated. Moreover, the PCM layer emplacement within the wall/roof structure was evaluated considering two possible configurations. The obtained results show a significative enhancement of the thermal performance of different wall facades and roof through the use of the suitable PCM quality. An appropriate selection of PCM layer emplacement yields an evidenced enhancement in the case of the roof. As for the walls, the integration of PCM from the interior side increase the TL period but has a negative impact on the DF parameter.  相似文献   
7.

Lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) ceramic powders were synthesized using the sol–gel method. The ceramics thickness was reduced to achieve high-energy storage and large electrocaloric effect in bulk ceramics. Dielectric, ferroelectric, energy storage, and electrocaloric properties were investigated for BCZT ceramic with 400 µm. Here, pure crystalline structure and homogenous microstructure were identified by XRD analysis and SEM measurements, respectively. The dielectric measurements revealed a maximum dielectric constant associated with ferroelectric–paraelectric phase transition. The maximum of \(\varepsilon^{\prime}_{{\text{r}}}\) was 17841, around 352 K. Furthermore, the BCZT ceramic exhibited improved energy storage and electrocaloric properties. A high recoverable energy density Wrec of 0.24 J/cm3 and a total energy density Wtotal of 0.27 J/cm3 with an efficiency coefficient of?~?88% at 423 K under an electric field of 55 kV/cm were obtained. Besides, The maximum value of ΔT?=?2.32 K, the electrocaloric responsivity ζ?=?0.42 K mm/kV, the refrigeration capacity RC?=?4.59 J/kg and the coefficient of performance COP?=?12.38 were achieved around 384 K under 55 kV/cm. The total energy density Wtotal and the temperature change ΔT were also calculated by exploiting the Landau–Ginzburg–Devonshire (LGD) theory. The theoretical results matched the experimental findings. These results suggest that the synthesized BCZT ceramic with reduced thickness could be a promising candidate for energy storage and electrocaloric applications.

  相似文献   
8.
Objective of this study is to develop a highly effective and durable phosphorus based epoxy resin as anticorrosive coating material for carbon steel in 3% NaCl medium. The hexaglycidyl N,N′,N″-tris (4,4′-ethylene dianiline) phosphoramide (HGTEDPA) was characterized using spectral methods. The anticorrosive formulation (HGTEDPA-MDA) was synthesized using HGTEDPA curing with 4,4′-methylenedianiline (MDA). The formulation (HGTEDPA-MDA) coated steel specimens were exposed to UV radiation for a specific durable (189 days) and durability of the formulation was tested along with its inhibition effectiveness. The anticorrosive property of the formulation was evaluated using electrochemical (electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP)) methods. Results showed that HGTEDPA-MDA coating improved the corrosion resistance value even after exposing 180 days to the UV radiation. PDP study suggested that HGTEDPA-MDA before and after UV radiations acted as mainly anodic and cathodic type of inhibitor, respectively. The EIS and PDP results were corroborated with density functional theory (DFT) and molecular dynamic simulations (MDS) methods and a reasonable good agreement was observed. DFT study revealed that HGTEDPA-MDA interacts with the metallic surface using donor–acceptor interactions. MDS study revealed that HGTEDPA-MDA spontaneously interacts with steel surface and adsorb using horizontal orientation.  相似文献   
9.
The copper(I)-catalyzed azide−alkyne cycloaddition (CuAAC) reaction is considered to be the most representative ligation process within the context of the “click chemistry” concept. This CuAAC reaction, which yields compounds containing a 1,2,3-triazole core, has become relevant in the construction of biologically complex systems, bioconjugation strategies, and supramolecular and material sciences. Although many CuAAC reactions are performed under homogenous conditions, heterogenous copper-based catalytic systems are gaining exponential interest, relying on the easy removal, recovery, and reusability of catalytically copper species. The present review covers the most recently developed copper-containing heterogenous solid catalytic systems that use solid inorganic/organic hybrid supports, and which have been used in promoting CuAAC reactions. Due to the demand for 1,2,3-triazoles as non-classical bioisosteres and as framework-based drugs, the CuAAC reaction promoted by solid heterogenous catalysts has greatly improved the recovery and removal of copper species, usually by simple filtration. In so doing, the solving of the toxicity issue regarding copper particles in compounds of biological interest has been achieved. This protocol is also expected to produce a practical chemical process for accessing such compounds on an industrial scale.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号