首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   2篇
化学工业   1篇
机械仪表   4篇
建筑科学   2篇
轻工业   1篇
无线电   2篇
一般工业技术   4篇
冶金工业   2篇
原子能技术   1篇
  2021年   1篇
  2017年   2篇
  2015年   1篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2003年   1篇
  2001年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Local effects on the shear connection of composite girders induced by longitudinal actions such as the anchorages of prestressing cables, concrete shrinkage, or a uniform thermal action on the slab are analyzed. Closed-form solutions are obtained by using the simple model of a composite beam with a linearly elastic shear connection. Successively, by considering the limit scheme of an infinitely long beam, very simple formulas are derived permitting evaluation of the peak value and extension of the interface shear force distribution induced by the longitudinal actions. Numerical applications are carried out to show the effectiveness of the proposed formulas for a wide range of the shear connection stiffness and for longitudinal forces applied both along the beam axis and at the beam end.  相似文献   
2.
The role of excess photon energy on charge generation efficiency in bulk heterojunction solar cells is still an open issue for the organic photovoltaic community. Here, the spectral dependence of the internal quantum efficiency (IQE) for a poly[2,6‐(4,4‐bis‐(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b]­dithiophene)‐alt‐4,7‐(2,1,3‐benzothiadiazole)]:6,6‐phenyl‐C61‐butyric acid methyl ester (PCPDTBT:PC60BM)‐based solar cell is derived combining accurate optoelectronic characterization and comprehensive optical modeling. This joint approach is shown to be essential to get reliable values of the IQE. Photons with energy higher than the bandgap of the donor material can effectively contribute to enhance the IQE of the solar cell. This holds true independently of the device architecture, reflecting an intrinsic property of the active material. Moreover, the nanomorphology of the bulk heterojunction plays a crucial role in determining the IQE spectral dependence: the coarser and more crystalline, the lesser the gain in IQE upon high energy excitation.  相似文献   
3.
4.
The use of metamodelling techniques in process design has become indispensable to perform faster solutions reducing time to market. This approach allows the implementation of decision support tools which are easier to use than the conventional numerical simulations. In this paper, a robust metamodelling technique has been designed and its feasibility has been validated for the crucial problem of localised thinning in sheet metal forming process. The proposed methodology is based on the innovative integration between the Design of Experimental statistical method and the Kriging one. This approach, in fact, allows to analyse contemporary the continuous and categorical factors and, as a consequence, to define a single tool for changing process conditions (i.e., material and product shape). To test the reliability of the mathematical approach, the same was performed for the case study of Incremental Sheet Forming, a process strongly affected by the not homogeneous distribution of the thickness. Taking advantage of this strategy, a wide experimental investigation has been performed to build the base of knowledge of the problem both for the metamodelling design and for the validation of the decision support tool; moreover, the experimental data were utilized to set and validate a numerical model, which was subsequently used to enrich the dataset. The proposed metamodel, suitably modified according to each process peculiarities, can be generally adapted for sheet thickness prediction.  相似文献   
5.
Industrial interest about Incremental Sheet Forming (ISF) process is growing in the last years. Up to a few years ago, two main investigation ways were proposed, the former aimed at analysing the process mechanics, the latter at reproducing some ??case study?? geometries. In industrial applications, if the long cycle-time can be neglected in small batches manufacturing, geometrical accuracy represents a relevant drawback, especially when the product has to be coupled to one another. For this reason, in the opinion of the authors, the low accuracy is the most relevant defect of ISF processes today. Among the techniques already set-up to reduce inaccuracy, the use of different material supports or the use of ??arbitrarily modified?? tool trajectories are probably the most known. In this paper a simple approach is proposed, based on the process self capability to correct inaccuracy when different steps of Incremental Sheet Forming are carried out on both the part surfaces. In particular, it is demonstrated that a relevant increasing in accuracy is obtainable at the second repeated step, while new ones do not reduce the inaccuracy sensitively. The above approach builds a new scenario since it allows to keep the basic equipment (without any support) and does not require any further knowledge concerning the material behaviour after the punch action. These aspects are deeply discussed in the next chapters.  相似文献   
6.
The radial neutron camera (RNC) will provide the spatial distribution and the total strength of the ITER neutron source (emissivity profile and fusion power) by means of collimated neutron measurements. Line-integrated neutron spectral measurements can also provide information on the ion temperature profile. The present design of the RNC consists of two collimating structures for a full coverage of the plasma: 36 collimated lines of sight (LOS) distributed in three different planes view the plasma core (ex-port system) and nine collimated LOS view the plasma edge (in-port system).The RNC design is based on the combined use of the MCNP Monte Carlo code and a software tool performing asymmetric Abel inversion of simulated measured neutron signals (MSST). Neutron and γ-ray transport calculations are performed with MCNP using a 3D RNC model to determine the signal/noise for each RNC channel and the spectra at the detectors. The MSST code is used to check the RNC compliance with the ITER measurement requirements for the neutron emissivity profile.In the present paper the improvement of the hard variance reduction technique applied to the MCNP neutron source (consisting in sampling neutrons only from plasma regions contributing to the detector signal) is presented and the following issues are analyzed: the possibility of reducing the length of the ex-port collimators (resulting in a significant reduction of the overall RNC dimension and weight); options for the reduction of the dose due to the neutron streaming through the RNC cut-outs in the blanket shielding module; the integration of a γ-ray detection system in the RNC by partially filling the collimators with a neutron absorbing material (LiH).  相似文献   
7.
In organic light‐emitting transistors, the structural properties such as the in‐plane geometry and the lateral charge injection are the key elements that enable the monolithic integration of multiple electronic, optoelectronic, and photonic functions within the same device. Here, the realization of highly integrated multifunctional optoelectronic organic device is reported by introducing a high‐capacitance photonic crystal as a gate dielectric into a transparent single‐layer ambipolar organic light‐emitting transistor (OLET). By engineering the photonic crystal multistack and bandgap, it is showed that the integration of the photonic structure has a twofold effect on the optoelectronic performance of the device, i.e., i) to modulate the spectral profile and outcoupling of the emitted light and ii) to enhance the transistor source–drain current by a 25‐fold factor. Consequently, the photonic‐crystal‐integrated OLET shows an order of magnitude higher emitted power and brightness with respect to the corresponding polymer‐dielectric device, while presenting as‐designed electroluminescence spectral and spatial distribution. The results validate the efficacy of the proposed approach that is expected to unravel the technological potential for the realization of highly integrated optoelectronic smart systems based on organic light‐emitting transistors.  相似文献   
8.
Numerical simulation of cutting processes is still a very difficult matter, although some relevant geometrical simplifications and high-performance codes are used. A large number of technical papers have been focused on the predictive capability of the codes: nevertheless the prediction quality is not very satisfactory if the problem is analyzed in a wide sense. In this paper the simple orthogonal cutting process of a plain-carbon steel is investigated taking into account different process conditions (cutting speed and feed rate). Furthermore, four material constitutive equations and three friction models were implemented and a sensitivity analysis was carried out comparing the numerical predictions and the experimental evidences. The results of this wide analysis are described in the paper.  相似文献   
9.
Time-Dependent Analysis of Shear-Lag Effect in Composite Beams   总被引:1,自引:0,他引:1  
Taking into account the long-term behavior of the concrete, a model for analyzing the shear-lag effect in composite beams with flexible shear connection is proposed. By assuming the slab loss of planarity described by a fixed warping function, the linear kinematics of the composite beam is expressed by means of four unknown functions: the vertical displacement of the whole cross section; the axial displacements of the concrete slab and of the steel beam; and the intensity of the warping (shear-lag function). A variational balance condition is imposed by the virtual work theorem for three-dimensional bodies, from which the local formulation of the problem, which involves four equilibrium equations with the relevant boundary conditions, is achieved. The assumptions of linear elastic behavior for the steel beam and the shear connection and of linear viscoelastic behavior for the concrete slab lead to an integral-differential type system, which is numerically integrated. The numerical procedure, based on the step-by-step general method and the finite-difference method, is illustrated and applied to an example of practical interest.  相似文献   
10.
Airway inflammation represents an important characteristic in asthma, modulating airflow limitation and symptom control, and triggering the risk of asthma exacerbation. Thus, although corticosteroids represent the cornerstone for the treatment of asthma, severe patients may be dependent on oral corticosteroids (OCSs). Fortunately, the current humanised monoclonal antibodies (mAbs) benralizumab, dupilumab, mepolizumab, omalizumab, and reslizumab have been proven to induce an OCS-sparing effect in randomized controlled trials (RCTs), thus overcoming the problem of OCS dependence in severe asthma. Nevertheless, a large discrepancy has been recognized between selected patients enrolled in RCTs and non-selected asthmatic populations in real-world settings. It is not possible to exclude that the OCS-sparing effect of mAbs resulting from the RCTs could be different than the real effect resulting in clinical practice. Therefore, we performed a systematic review and correlation analysis to assess whether mAbs are effective in eliciting an OCS-sparing effect and overcoming the OCS dependence in severe asthmatic patients in real-world settings. Overall, real-world studies support the evidence that OCS dependence is a real condition that, however, can be found only in a small number of really severe asthmatic patients. In most patients, the dependence on OCS can be related to modifying factors that, when adequately modulated, may lead to a significant reduction or suspension of OCS maintenance. Conversely, in severe asthmatics in whom OCS resistance is proved by a high daily dose intake, mAbs allow reversion of the OCS dependence, leading to the suspension of OCS therapy in most patients or >50% reduction in the daily OCS dose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号