首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
无线电   4篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
The paper presents a systematic investigation of dielectric charging in low temperature silicon nitride for RF-MEMS capacitive switches. The dielectric charging is investigated with the aid of Metal-Insulator-Metal (MIM) capacitors with different thickness dielectric film and symmetric and asymmetric metal contacts. The experimental results demonstrate that the charging process is almost symmetric in low temperature deposited silicon nitride. Experiments performed in both MIM and MEMS reveal that the charging process is strongly affected by temperature. Specifically at high temperatures the charging rate increases exponentially with temperature.  相似文献   
2.
The present work presents a new method to calculate the discharge current in the bulk of dielectric films of MEMS capacitive switches. This method takes into account the real MEMS switch with non uniform trapped charge and air gap distributions. The assessment of switches with silicon nitride dielectric film shows that the discharge current transient seems to obey the stretched exponential law. The decay characteristics depend on the polarization field’s polarity, a fact that comes along with experimental results obtained from the thermally stimulated depolarization currents (TSDC) method used in MIM capacitors.  相似文献   
3.
The paper investigates the effect of 5 MeV alpha particle irradiation in RF MEMS capacitive switches with silicon nitride dielectric film. The investigation included MIM capacitors in order to obtain a better insight on the irradiation introduced defects in the dielectric film. The assessment employed the thermally stimulated depolarization currents method for MIM capacitors and the capacitance–voltage characteristic for MEMS switches. Asymmetric charging was monitored in MIM capacitors due different contact electrodes and injected charge interactions.  相似文献   
4.
The present work investigates the results of different characterization methods for the dielectric charging phenomenon applicable to metal–insulator–metal (MIM) capacitors and electrostatically actuated micro-electro-mechanical-systems (MEMS). The discharge current transients (DCT), thermally stimulated depolarization current (TSDC) and Kelvin probe force microscopy (KPFM) assessment methods have been applied to either MIM capacitors or electrostatic capacitive MEMS switches or both. For the first time, the KPFM methodology has been used to create a link between the results obtained from the DCT and TSDC techniques applicable for MIM and the results from MEMS switches. The comparison shows that the application of KPFM method to MIM and MEMS leads to the same results on the electrical properties of the dielectric material. This provides a novel powerful tool for the assessment of dielectric charging for MEMS switches using MIM capacitors which have much simpler layer structure. On the other hand the TSDC method reveals a continuous distribution of relaxation time constants, which supports the dependence of relaxation time constant calculated for MEMS on the duration of the observation time window.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号