首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   2篇
化学工业   1篇
金属工艺   1篇
无线电   6篇
一般工业技术   9篇
冶金工业   5篇
自动化技术   3篇
  2018年   3篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   4篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2005年   2篇
  2004年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1985年   1篇
  1979年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
Thelander  M. 《IT Professional》2004,6(6):49-56
In terms of the commercial sector's overall energy demand, lighting, heating, and air conditioning still dominate, but the rapid growth in ICT energy consumption is drawing scrutiny from the people tasked with finding energy efficiencies. The energy appetite of the IT infrastructure is increasing every day, making it a prime target for cost control. Network energy management might be the solution.  相似文献   
2.
The Ga(x)In(1-x)Sb ternary system has many interesting material properties, such as high carrier mobilities and a tunable range of bandgaps in the infrared. Here we present the first report on the growth and compositional control of Ga(x)In(1-x)Sb material grown in the form of nanowires from Au seeded nanoparticles by metalorganic vapor phase epitaxy. The composition of the grown Ga(x)In(1-x)Sb nanowires is precisely controlled by tuning the growth parameters where x varies from 1 to ~0.3. Interestingly, the growth rate of the Ga(x)In(1-x)Sb nanowires increases with diameter, which we model based on the Gibbs-Thomson effect. Nanowire morphology can be tuned from high to very low aspect ratios, with perfect zinc blende crystal structure regardless of composition. Finally, electrical characterization on nanowire material with a composition of Ga(0.6)In(0.4)Sb showed clear p-type behavior.  相似文献   
3.
The amino acid sequence of chicken apolipoprotein CII (apoCII) was determined from cDNA sequencing and from partial protein sequencing. The chicken sequence showed an overall identity of around 30% to all the other previously known apoCII sequences. Comparison of the carboxyl-terminal domain (residues 51-79, human numbering) showed at least 50% identity between species. By limiting the region to residues 51-70 the similarity was remarkably high, about 85%. This is in concert with the previous opinion that residues in the region 56-76 are directly engaged in binding to lipoprotein lipase and in activation of this enzyme. In contrast, in the amino-terminal end up to residue 50 (human numbering) less than 24% of the amino acid residues in chicken apoCII were identical to residues of any of the other species. In addition, chicken apoCII is four residues longer than human apoCII (83 versus 79 residues), probably due to an extension at the amino-terminal end. Although the sequence was completely different in the amino-terminal domain, the structures necessary for binding to lipid appear to be present in chicken apoCII. Secondary structure prediction showed that the amino-terminal domain could form two amphipathic alpha-helices in almost similar areas of the sequence as was previously predicted for human apoCII.  相似文献   
4.
The crystal structure of a material has a large impact on the electronic and material properties such as band alignment, bandgap energy, and surface energies. Au‐seeded III–V nanowires are promising structures for exploring these effects, since for most III–V materials they readily grow in either wurtzite or zinc blende crystal structure. In III–Sb nanowires however, wurtzite crystal structure growth has proven difficult. Therefore, other methods must be developed to achieve wurtzite antimonides. For GaSb, theoretical predictions of the band structure diverge significantly, but the absence of wurtzite GaSb material has prevented any experimental verification of the properties. Having access to this material is a critical step toward clearing the uncertainty in the electronic properties, improving the theoretical band structure models and potentially opening doors toward application of this material. This work demonstrates the use of InAs wurtzite nanowires as templates for realizing GaSb wurtzite shell layers with varying thicknesses. The properties of the axial and radial heterointerfaces are studied at the atomic scale by means of aberration‐corrected scanning transmission electron microscopy, revealing their sharpness and structural quality. The transport characterizations point toward a positive offset in the valence bandedge of wurtzite compared to zinc blende.  相似文献   
5.
6.
Gated transport measurements are the backbone of electrical characterization of nanoscale electronic devices. Scanning gate microscopy (SGM) is one such gating technique that adds crucial spatial information, accessing the localized properties of semiconductor devices. Nanowires represent a central device concept due to the potential to combine very different materials. However, SGM on semiconductor nanowires has been limited to a resolution in the 50-100 nm range. Here, we present a study by SGM of newly developed III-V semiconductor nanowire InAs/GaSb heterojunction Esaki tunnel diode devices under ultra-high vacuum. Sub-5 nm resolution is demonstrated at room temperature via use of quartz resonator atomic force microscopy sensors, with the capability to resolve InAs nanowire facets, the InAs/GaSb tunnel diode transition and nanoscale defects on the device. We demonstrate that such measurements can rapidly give important insight into the device properties via use of a simplified physical model, without the requirement for extensive calculation of the electrostatics of the system. Interestingly, by precise spatial correlation of the device electrical transport properties and surface structure we show the position and existence of a very abrupt (〈10 nm) electrical transition across the InAs/GaSb junction despite the change in material composition occurring only over 30-50 nm. The direct and simultaneous link between nanostructure composition and electrical properties helps set important limits for the precision in structural control needed to achieve desired device performance.  相似文献   
7.
8.
Class I ribonucleotide reductases consist of two subunits, R1 and R2. The active site is located in R1; active R2 contains a diferric center and a tyrosyl free radical (Tyr.), both essential for enzymatic activity. The proposed mechanism for the enzymatic reaction includes the transport of a reducing equivalent, i.e. electron or hydrogen radical, across a 35-A distance between Tyr. in R2 and the active site in R1, which are connected by a hydrogen-bonded chain of conserved, catalytically essential amino acid residues. Asp266 and Trp103 in mouse R2 are part of this radical transfer pathway. The diferric/Tyr. site in R2 is reconstituted spontaneously by mixing iron-free apoR2 with Fe(II) and O2. The reconstitution reaction requires the delivery of an external reducing equivalent to form the diferric/Tyr. site. Reconstitution kinetics were investigated in mouse apo-wild type R2 and the three mutants D266A, W103Y, and W103F by rapid freeze-quench electron paramagnetic resonance with >/=4 Fe(II)/R2 at various reaction temperatures. The kinetics of Tyr. formation in D266A and W103Y is on average 20 times slower than in wild type R2. More strikingly, Tyr. formation is completely suppressed in W103F. No change in the reconstitution kinetics was found starting from Fe(II)-preloaded proteins, which shows that the mutations do not affect the rate of iron binding. Our results are consistent with a reaction mechanism using Asp266 and Trp103 for delivery of the external reducing equivalent. Further, the results with W103F suggest that an intact hydrogen-bonded chain is crucial for the reaction, indicating that the external reducing equivalent is a H. Finally, the formation of Tyr. is not the slowest step of the reaction as it is in Escherichia coli R2, consistent with a stronger interaction between Tyr. and the iron center in mouse R2. A new electron paramagnetic resonance visible intermediate named mouse X, strikingly similar to species X found in E. coli R2, was detected only in small amounts under certain conditions. We propose that it may be an intermediate in a side reaction leading to a diferric center without forming the neighboring Tyr.  相似文献   
9.
We demonstrate radio frequency single-electron transistors fabricated from epitaxially grown InAs/InP heterostructure nanowires. Two sets of double-barrier wires with different barrier thicknesses were grown. The wires were suspended 15 nm above a metal gate electrode. Electrical measurements on a high-resistance nanowire showed regularly spaced Coulomb oscillations at a gate voltage from -0.5 to at least 1.8 V. The charge sensitivity was measured to 32 microe rms Hz(-1/2) at 1.5 K. A low-resistance single-electron transistor showed regularly spaced oscillations only in a small gate-voltage region just before carrier depletion. This device had a charge sensitivity of 2.5 microe rms Hz(-1/2). At low frequencies this device showed a typical 1/f noise behavior, with a level extrapolated to 300 microe rms Hz(-1/2) at 10 Hz.  相似文献   
10.
We present electrical characterization of broken gap GaSb-InAsSb nanowire heterojunctions. Esaki diode characteristics with maximum reverse current of 1750 kA/cm(2) at 0.50 V, maximum peak current of 67 kA/cm(2) at 0.11 V, and peak-to-valley ratio (PVR) of 2.1 are obtained at room temperature. The reverse current density is comparable to that of state-of-the-art tunnel diodes based on heavily doped p-n junctions. However, the GaSb-InAsSb diodes investigated in this work do not rely on heavy doping, which permits studies of transport mechanisms in simple transistor structures processed with high-κ gate dielectrics and top-gates. Such processing results in devices with improved PVR (3.5) and stability of the electrical properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号