首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
综合类   6篇
化学工业   1篇
能源动力   2篇
无线电   4篇
一般工业技术   2篇
  2023年   1篇
  2021年   2篇
  2020年   3篇
  2018年   7篇
  2015年   1篇
  2005年   1篇
排序方式: 共有15条查询结果,搜索用时 46 毫秒
1.
Understanding pedestrian crash causes and contributing factors in developing countries is critically important as they account for about 55% of all traffic crashes. Not surprisingly, considerable attention in the literature has been paid to road traffic crash prediction models and methodologies in developing countries of late. Despite this interest, there are significant challenges confronting safety managers in developing countries. For example, in spite of the prominence of pedestrian crashes occurring on two-way two-lane rural roads, it has proven difficult to develop pedestrian crash prediction models due to a lack of both traffic and pedestrian exposure data. This general lack of available data has further hampered identification of pedestrian crash causes and subsequent estimation of pedestrian safety performance functions. The challenges are similar across developing nations, where little is known about the relationship between pedestrian crashes, traffic flow, and road environment variables on rural two-way roads, and where unique predictor variables may be needed to capture the unique crash risk circumstances. This paper describes pedestrian crash safety performance functions for two-way two-lane rural roads in Ethiopia as a function of traffic flow, pedestrian flows, and road geometry characteristics. In particular, random parameter negative binomial model was used to investigate pedestrian crashes. The models and their interpretations make important contributions to road crash analysis and prevention in developing countries. They also assist in the identification of the contributing factors to pedestrian crashes, with the intent to identify potential design and operational improvements.  相似文献   
2.
Longwall gateroad entries are subject to changing horizontal and vertical stress induced by redistribution of loads around the extracted panel. The stress changes can result in significant deformation of the entries that may include roof sag, rib dilation, and floor heave. Mine operators install different types of supports to control the ground response and maintain safe access and ventilation of the longwall face. This paper describes recent research aimed at quantifying the effect of longwall-induced stress changes on ground stability and using the information to assess support alternatives. The research included monitoring of ground and support interaction at several operating longwall mines in the U.S., analysis and calibration of numerical models that adequately represent the bedded rock mass, and observation of the support systems and their response to changes in stress. The models were then used to investigate the impact of geology and stress conditions on ground deformation and support response for various depths of cover and geologic scenarios. The research results were summarized in two regression equations that can be used to estimate the likely roof deformation and height of roof yield due to longwall-induced stress changes. This information is then used to assess the ability of support systems to maintain the stability of the roof. The application of the method is demonstrated with a retrospective analysis of the support performance at an operating longwall mine that experienced a headgate roof fall. The method is shown to produce realistic estimates of gateroad entry stability and support performance, allowing alternative support systems to be assessed during the design and planning stage of longwall operations.  相似文献   
3.
Coal bumps have long been a safety hazard in coal mines, and even after decades of research, the exact mechanics that cause coal bumps are still not well understood. Therefore, coal bumps are still difficult to predict and control. The LaModel program has a long history of being used to effectively analyze displacements and stresses in coal mines, and with the recent addition of energy release and local mine stiffness calculations, the LaModel program now has greatly increased capabilities for evaluating coal bump potential. This paper presents three recent case histories where coal stress, pillar safety factor, energy release rate and local mine stiffness calculations in LaModel were used to evaluate the pillar plan and cut sequencing that were associated with a number of bumps. The first case history is a longwall mine where a simple stress analysis was used to help determine the limiting depth for safely mining in bump-prone ground. The second case history is a room-and-pillar retreat mine where the LaModel analysis is used to help optimize the pillar extraction sequencing in order to minimize the frequent pillar line bumps. The third case history is the Crandall Canyon mine where an initial bump and then a massive pillar collapse/bump which killed 6 miners is extensively back-analyzed. In these case histories, the calculation tools in LaModel are ultimately shown to be very effective for analyzing various aspects of the bump problem, and in the conclusions, a number of critical insights into the practical calculation of mine failure and stability developed as a result of this research are presented.  相似文献   
4.
Wireless Networks - In this paper we consider a single-cell massive multiple-input-multiple-output scenario, where the number of base station (BS) antennas is larger than the number of single...  相似文献   
5.
Room-and-pillar mining with pillar recovery has historically been associated with more than 25% of all ground fall fatalities in underground coal mines in the United States.The risk of ground falls during pillar recovery increases in multiple-seam mining conditions.The hazards associated with pillar recovery in multiple-seam mining include roof cutters, roof falls, rib rolls, coal outbursts, and floor heave.When pillar recovery is planned in multiple seams, it is critical to properly design the mining sequence and panel layout to minimize potential seam interaction.This paper addresses geotechnical considerations for concurrent pillar recovery in two coal seams with 21 m of interburden under about 305 m of depth of cover.The study finds that, for interburden thickness of 21 m, the multiple-seam mining influence zone in the lower seam is directly under the barrier pillar within about 30 m from the gob edge of the upper seam.The peak stress in the interburden transfers down at an angle of approximately 20°away from the gob, and the entries and crosscuts in the influence zone are subjected to elevated stress during development and retreat.The study also suggests that, for full pillar recovery in close-distance multiple-seam scenarios,it is optimal to superimpose the gobs in both seams, but it is not necessary to superimpose the pillars.If the entries and/or crosscuts in the lower seam are developed outside the gob line of the upper seam,additional roof and rib support needs to be considered to account for the elevated stress in the multiple-seam influence zone.  相似文献   
6.

The increase of mobile data users has created traffic congestion in current cellular networks. Due to this, mobile network providers have been facing difficulty in delivering the best services for customers. Since, detecting community in mobile social network is a valuable technique to leverage the downlink traffic congestion by enhancing local communications within the community, it attracts the attention of many researchers. Therefore, developing an algorithm, which detects community, plays a key role in mobile social network. In this paper, first, we proposed external density metrics to detect mobile social network. External density is defined as the ratio of outgoing links to total links of the community. Second, method to find the best group for common node is proposed. Therefore, an external density algorithm, makes a fair partition by grouping common nodes to a community with relatively higher external density. As a result, the overall modularity value of the network has increased. Third, the proposed algorithm is evaluated. Hence, the evaluation results confirm that our proposed approach has demonstrated good performance improvements than traditional methods.

  相似文献   
7.
Several questions have emerged in relation to deep cover bleeder entry performance and support loading:how well do current modeling procedures calculate the rear abutment extent and loading? Does an improved understanding of the rear abutment extent warrant a change in standing support in bleeder entries? To help answer these questions and to determine the current utilization of standing support in bleeder entries, four bleeder entries at varying distances from the startup room were instrumented,observed, and numerically modeled.This paper details observations made by NIOSH researchers in the bleeder entries of a deep cover longwall panel—specifically data collected from instrumented pumpable cribs, observations of the conditions of the entries, and numerical modeling of the bleeder entries during longwall extraction.The primary focus was on the extent and magnitude of the abutment loading experienced by the standing support.As expected, the instrumentation of the standing supports showed very little loading relative to the capacity of the standing supports—less than 23 Mg load and 2.54 cm convergence.The Flac3D program was used to evaluate these four bleeder entries using previously defined modeling and input parameter estimation procedures.The results indicated only a minor increase in load during the extraction of the longwall panel.The model showed a much greater increase in stress due to the development of the gateroad and bleeder entries, with about 80% of the increase associated with development and 20% with longwall extraction.The Flac3D model showed very good correlation between expected gateroad loading during panel extraction and that expected based on previous studies.The results of this study showed that the rear abutment stress experienced by this bleeder entry design was minimal.The farther away from the startup room, the lower the applied load and smaller the convergence in the entry if all else is held constant.Finally, the numerical modeling method used in this study was capable of replicating the expected and measured results near seam.  相似文献   
8.
Dry reforming of methane (DRM), which involves the activation of inert C H bonds and CO bonds, at mild conditions is a tremendous challenge. The sluggish mobility of oxygen during the reaction is known as a key issue causing low activity and poor stability of catalysts by the coke formation. Herein, a novel Cu-CNN/Pd-BDCNN photocatalyst that is made up of “Cu-nanoparticle-loaded g-C3N4 nanosheets” and “Pd-nanoparticle-loaded boron-doped nitrogen-deficient g-C3N4 nanosheets” is reported. The existing dual-reaction-sites benefit the reactive oxygen intermediates participate in the reaction directly without distant migration. The in situ characterizations and density functional theory calculations reveal a newly dual reaction pathway through simultaneous dehydrogenation of methoxy and methyl intermediates, and demonstrate the importance of metal loading, which promote the CO2 and CH4 activation from both aspects of thermodynamics and kinetics. The optimized Cu-CNN/Pd-BDCNN photocatalyst displays an excellent syngas formation rate of over 800 µmol g−1 h−1 with H2/CO = 1 and splendid stability in continuous flow reaction under 300 mW cm−2 xenon lamp irradiation at room temperature. The “dual-site” and “dual-path” strategy shed light on the design of effective photocatalysts for methane dry reforming.  相似文献   
9.
A comprehensive monitoring program was conducted to measure the rock mass displacements, support response, and stress changes at a longwall tailgate entry in West Virginia.Monitoring was initiated a few days after development of the gateroad entries and continued during passage of the longwall panels on both sides of the entry.Monitoring included overcore stress measurements of the initial stress within the rock mass, changes in cable bolt loading, standing support pressure, roof deformation, rib deformation,stress changes in the coal pillar, and changes in the full three-dimensional stress tensor within the rock mass at six locations around the monitoring site.During the passage of the first longwall, stress measurements in the rock and coal detected minor changes in loading while minor changes were detected in roof deformation.As a result of the relatively favorable stress and geological conditions, the support systems did not experience severe loading or rock deformation until the second panel approached within 10–15 m of the instrumented locations.After reaching the peak loading at about 50–75 mm of roof sag, the cable bolts started to unload, and load was transferred to the standing supports.The standing support system was able to maintain an adequate opening inby the shields to provide ventilation to the first crosscut inby the face, as designed.The results were used to calibrate modeled cable bolt response to field data, and to validate numerical modeling procedures that have been developed to evaluate entry support systems.It is concluded that the support system was more than adequate to control the roof of the tailgate up to the longwall face location.The monitoring results have provided valuable data for the development and validation of support design strategies for longwall tailgate entries.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号