首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
金属工艺   2篇
无线电   2篇
一般工业技术   3篇
  2009年   5篇
  2008年   2篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
钽催化磁控溅射法制备GaN纳米线   总被引:1,自引:0,他引:1  
利用磁控溅射技术通过氮化Ga2O3/Ta薄膜,合成大量的一维单晶纤锌矿型氮化镓纳米线.用X射线衍射、扫描电子显微镜、高分辨透射电子显微镜,选区电子衍射和光致发光谱对制备的氮化镓进行了表征.结果表明;制备的GaN纳米线是六方纤锌矿结构,其直径大约20~60 nm,其最大长度可达10 μm左右.室温下光致发光谱测试发现363 nm处的较强紫外发光峰.另外,简单讨论了氮化镓纳米线的生长机制.  相似文献   
2.
通过一种新奇的方法在硅衬底上成功地合成了掺杂镁的氮化镓纳米线,用金属镁粉末作为掺杂源,然后在900℃时于流动的氨气中进行氨化Ga2P3薄膜制备GaN纳米线.X射线衍射(XRD)、扫描电镜(SEM)、透射电子显微镜(TEM)、选区电子衍射(SAED)和能量弥散X射线谱(EDX)的分析结果表明,采用此方法得到的GaN纳米线为六方纤锌矿结构,纳米线的直径大约在60~100nm之间,纳米线的长约十几个微米.EDX分析表明纳米线掺杂了镁.室温下以325nm波长的光激发样品表面,发现由于镬的掺杂使GaN的发光峰有较大的蓝移.最后,简单讨论了GaN纳米线的生长机制.  相似文献   
3.
采用磁控溅射的方法在Si(111)衬底上溅射沉积Ga2O3/Cr膜,并通过氨化的方法在Si(111)衬底上成功合成了六方纤锌矿GaN纳米结构材料,研究了不同的氨化温度对合成GaN纳米材料的影响.采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HR-TEM)、傅里叶红外吸收(FTIR)光谱来检测样品的形态,结构和成分,并且讨论了GaN纳米结构的生长机理.研究结果表明,在Cr催化合成GaN纳米结构的过程中,氨化温度对其有重要影响,最佳温度是950℃.  相似文献   
4.
使用一种新奇的稀土元素铽(Tb)作催化剂,通过氨化磁控溅射在Si(111)衬底上的Ga2O3/Tb薄膜,合成了大量的GaN纳米棒,氨化温度为950℃,氨化时间为15min。该方法可以进行持续合成且制备的GaN纳米棒纯度较高、成本低廉。实验后分别用扫描电子显微镜(SEM)、X射线衍射(XRD)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)和X射线光电子能谱(XPS)对样品进行了结构、表面形态和成分测试。通过XRD和XPS测试分析,合成的纳米棒具有六方纤锌矿GaN结构;通过SEM、TEM和HRTEM观察分析得出合成的纳米棒为单晶GaN纳米棒。简单讨论了GaN纳米棒的生长机制。  相似文献   
5.
使用一种新奇的稀土元素铽(Tb)作催化剂,通过氨化磁控溅射在Si(111)衬底上的Ga2O3/Tb薄膜,合成了大量的GaN纳米棒,氨化温度为950℃,氨化时间为15min。该方法可以进行持续合成且制备的GaN纳米棒纯度较高、成本低廉。实验后分别用扫描电子显微镜(SEM)、X射线衍射(XRD)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)和X射线光电子能谱(XPS)对样品进行了结构、表面形态和成分测试。通过XRD和XPS测试分析,合成的纳米棒具有六方纤锌矿GaN结构;通过SEM、TEM和HRTEM观察分析得出合成的纳米棒为单晶GaN纳米棒。简单讨论了GaN纳米棒的生长机制。  相似文献   
6.
氨化硅基钒应变层氧化镓膜制备了大量氮化镓纳米线,X射线衍射、扫描电子显微镜和透射电子显微镜观察发现,纳米线具有十分光滑且干净的表面,其直径为20~60 nm左右,长度达到十几微米.高分辨透射电子显微镜和选区电子衍射分析结果表明,制备的氮化稼纳米线为六方纤锌矿结构.光致发光谱显示制备的氮化稼纳米线有良好的发光特性.另外,简单讨论了氮化稼纳米线的生长机制.  相似文献   
7.
化学气相沉积法制备GaN纳米线和纳米棒   总被引:1,自引:0,他引:1  
采用浸渍法在未抛光的硅衬底上涂抹一层NiCl2薄膜,通过化学气相沉积法(CVD)制备出高质量的GaN纳米线和纳米棒.X射线衍射(XRD)、傅立叶红外吸收光谱(FTIR)、选区电子衍射(SAED)和高分辨透射电子显微镜(HRTEM)的分析结果表明,采用此方法得到了六方纤锌矿结构的GaN单晶纳米线.通过扫描电镜(SEM)观察发现纳米线的形貌,纳米线的直径在50~200nm之间,纳米棒的直径在200~800nm之间.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号