首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   2篇
  国内免费   3篇
综合类   3篇
机械仪表   45篇
一般工业技术   48篇
自动化技术   3篇
  2023年   6篇
  2022年   10篇
  2021年   5篇
  2020年   8篇
  2019年   5篇
  2018年   12篇
  2017年   4篇
  2016年   4篇
  2015年   4篇
  2014年   16篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2010年   3篇
  2009年   9篇
  2008年   2篇
  2007年   1篇
  2005年   3篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
1.
针对时速250 km/h动车组车内噪声问题,使用试验和仿真相结合的方法,对其车内声源特性及其贡献量进行分析。首先,通过球形声阵列系统测试分析动车组的车内源强、频谱及分布特性,明确客室端部噪声主要能量集中在中心频率400 Hz~2 000 Hz的1/3倍频带,声源主要位于风挡区域和地板区域。然后,基于统计能量分析(SEA)方法,建立动车组的车内噪声仿真模型。模型中,声源激励采用线路试验实测数据、车体结构声学特性参数由实验室测试确定。进而,将仿真预测结果和声源识别结果进行联合对比,验证仿真模型的可靠性。最后,通过深入分析动车组车内噪声SEA模型的功率输入贡献,并对客室端部的噪声传递进行量化排序,确定各声源的车内噪声量化贡献。结果表明,时速250 km/h动车组的客室端部噪声源主要是轮轨噪声、其次为气动噪声。其中轮轨噪声在50 Hz~100 Hz和315 Hz~5 000 Hz的1/3倍频带贡献量达到80%。所有声源经由地板和风挡连接处传声贡献率为50%、侧墙和顶板贡献率为38%。  相似文献   
2.
采用声学模态叠加法建立单腔扩张式消声器传递损失计算模型,然后通过Matlab编程实现单腔扩张式消声器传递损失的数值计算。在此基础上,比较声学模态叠加法、有限元法和基于平面波假定的经典公式法在计算单腔扩张式消声器传递损失上的差别,研究单腔扩张式消声器膨胀段尺寸对传递损失的影响。结果表明,对于平面入射波,声学模态叠加法可用于单腔扩张式消声器各频段传递损失的计算;增大膨胀段的半径能有效提高低频段的传递损失,但对高频段的影响较小;随着膨胀段宽度的增大,传递损失的峰值向低频移动,传递损失最大的频段向高频移动。  相似文献   
3.
针对轨道车辆轻量化设计后可能带来的隔声性能降低问题,研究不同截面加强筋铺设对板件隔声性能的改善效果。基于混合有限元-统计能量分析(Hybrid FE-SEA)方法建立轨道车辆加筋板结构隔声特性预测分析模型,系统分析T型、L型、I型和矩形加强筋截面类型对板件隔声性能的影响。研究结果表明,加筋板的刚度和1阶固有频率皆比均质板大,且随加强筋厚度的增大而增大;当加强筋厚度恒定时,T型加筋板的刚度和1阶固有频率最大,L型加筋板次之;敷设厚度15 mm的加强筋,板件的隔声性能最佳;当加强筋的质量、厚度、腹板面积及尺寸、翼板面积相等时,各类型加筋板的计权隔声量Rw差异不大;板件加筋后,刚度控制区的隔声量增幅3 dB~17 dB,1 250 Hz~4 000 Hz中高频段的隔声量增幅1 d B~6 d B。综合分析可知,以计权隔声量为评价标准时,在加强筋质量、腹板面积、翼板面积及尺寸相等时,敷设厚度15 mm加强筋,板件的隔声性能最佳,Rw较均质板可提高1.4 dB~1.5 dB,而加强筋厚度恒定时,T型和L型加筋板的刚度又最佳。相关研究成果可为轨道车辆板件结构加筋优化提供设计参考。  相似文献   
4.
移动荷载作用下的桥梁振动及其TMD控制   总被引:6,自引:3,他引:6  
为了全面地了解移动荷载作用下桥梁的振动机理及其调质阻尼器(TMD)控制,将列车简化成移动简谐力模型,对列车过桥时桥梁的振动形态幅频特性作了详细的探讨。然后论述了移动荷载作用下的TMD控制。给出了桥梁在不同速度下的幅频特性曲线以及TMD控制的质量比影响曲线,揭示了移动荷载作用下的桥梁振动及其控制的特点,同时为进一步的桥梁振动控制提供详尽的参考数据。  相似文献   
5.
高速铁路声屏障几何形状声学性能数值模拟   总被引:1,自引:0,他引:1  
为了弄清声屏障几何形状对高速铁路户外噪声的降噪机理和降噪效果,采用二维边界元法建立高架桥铁路声屏障噪声预测模型,分析不同几何形状结构参数对降噪性能的影响。分析中考虑列车运行速度、声源分布及频谱特性对插入损失的影响,根据车外声源识别结果建立符合我国高速铁路的声源模型;考虑车体-轨道-声屏障之间的多重反射,建立边界元计算模型;对顶部倾斜、T型、多重绕射边型、Y型、圆柱型等声屏障的结构参数的影响进行调查分析,分析中分别考虑插入损失、场点频谱及声场变化规律。研究结果表明,Y型声屏障降噪效果最好,平均插入损失提高3.4 dB(A)其次为圆柱型声屏障。  相似文献   
6.
7.
运用实心球传声器阵列波束形成技术识别声源时,滤波求和算法提高了传统声压球谐函数角度分解算法的旁瓣抑制性能,但其采用声源强度作为输出,无法直接反映声源对目标接收者的声学贡献,且输出结果是否准确依赖于聚焦距离是否等于源到阵列中心的真实距离。针对此问题,以最小化最大旁瓣为目标,以声压贡献输出的主瓣峰值无畸变为约束条件,构建二阶锥规划优化模型,采用CVX凸优化求解器进行求解获取滤波参数,最终建立以声压贡献为输出的球面阵波束形成声源识别滤波求和算法。仿真及试验结果均表明,该算法实现了声源对目标接收者的声压贡献量化,且量化准确度几乎不受聚焦距离的影响,同时具有优秀的旁瓣抑制性能和良好的空间分辨率。  相似文献   
8.
在实际运营的线路上测试一种新型卧铺动车组250 km/h匀速运行时的包间噪声。基于心理声学参数,包括响度、尖锐度、抖动强度和粗糙度,详细分析新型卧铺动车组不同"坐卧型式"下的包间声品质特性,并使用球形声阵列对包间噪声进行基于心理声学参数的声源识别。研究结果表明:上、下铺平躺时的噪声主要差别在于响度和抖动强度,尖锐度和粗糙度的水平基本一致。对于右耳,上、下铺平躺时的心理声学参数差异规律和左耳相似,但是差异的百分比明显高于左耳。下铺平躺和坐立时,左、右耳规律不同,左耳心理声学参数相差最大的是响度,右耳相差最大的则是尖锐度。响度的声源位置主要位于车窗区域,其次为顶板区域;尖锐度的声源位置主要位于地板区域。相关研究结果可为新型卧铺动车组包间声学环境的优化提供科学依据和参考。  相似文献   
9.
采用钢轨动力吸振器是降低轮轨振动噪声的有效措施之一,基于有限元和边界元法建立钢轨动力吸振器振动噪声计算模型,分析单自由度钢轨动力吸振器系统和多重钢轨动力吸振器系统的减振降噪性能差异,调查在不同车轮钢轨表面粗糙度、不同列车运行速度工况下钢轨动力吸振器结构降噪特性。计算结果表明:多重钢轨动力吸振器结构较单自由度钢轨动力吸振器结构有更为优良的减振和降噪性能。随着列车运行速度增加,轮轨总辐射噪声增加,同时钢轨动力吸振器结构的降噪效果也有一定提升,而对于不同轮轨表面粗糙度,钢轨动力吸振器降噪量效果不会有较大的波动。  相似文献   
10.
为了抑制空调系统对高速列车车内噪声的影响,在风道内设置阻抗复合消声器,量化分析传声特性是高速列车低噪声设计的重要内容. 基于有限元-统计能量分析(FE-SEA)混合法建立某高速列车风道消声器传声特性分析模型,对80~3 150 Hz频率区段的风道消声器传声特性进行预测计算. 采用声学有限元法建立风道消声器声学模态分析模型,针对传递损失的峰值和谷值所在的频率区段,计算风道消声器声学模态,解释传递损失峰/谷值的成因. 从提升声学性能的角度,结合工程实际情况,对风道消声器进行设计方案优选. 结果表明:风道消声器具有良好的降噪作用,声学模态振型特性是传递损失峰/谷值的成因;消声器阻性特性对传递损失的影响最大,通过吸声选材优选可以最大提高传递损失18.0 dB;消声器抗性特性影响相对较小,通过吸声包数量和位置的优选可以最大提高传递损失4.1 dB;考虑阻抗复合优选方案,最高可以提高风道消声器传递损失18.6 dB.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号