首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
建筑科学   1篇
一般工业技术   2篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
This study investigated the behavior of apparent electrical resistivity of concrete mixes with the addition of rice husk ash using Wenner’s four electrode method. Tests included compressive strength, porosity and electrical conductivity of the pore solution. The contents of rice husk ash tested were 10%, 20% and 30% and results were compared with a reference mix with 100% Portland cement and two other binary mixes with 35% fly ash and 50% blast furnace slag. Higher contents of rice husk ash resulted in higher electrical resistivity, which exceeded those of all other samples. However, for compressive strength levels between 40 MPa and 70 MPa, the mix with 50% blast furnace slag showed the best combination of cost and performance.  相似文献   
2.
This study investigates the influence of the curing time on the chloride penetration behavior of concrete produced with different concentrations of rice husk ash. Compressive strength and chloride penetration at 91 days were assessed according to ASTM C1202. Concentrations of 10%, 20% and 30% of rice husk ash were used and the results were compared with a reference mix with 100% Portland cement and with two other binary mixes with 35% fly ash and 50% ground blast furnace slag. Increases in rice husk ash content produced lower Coulomb charge values. Longer curing times reduced Coulomb charges values for all mixes investigated. However, the extent of the effect of curing times on compressive strength and chloride penetration in concrete is related to the type of mineral addition, the concentration of the substitutions used, the w/b ratio and the curing time used. This behavior points at an optimal curing period for each type of binder to meet specific technical and economical criteria, namely durability and compressive strength specifications for the structure.  相似文献   
3.
Electrical resistivity is an important characteristic of concrete because it allows evaluation of the accessibility of aggressive agents prior to the beginning of the corrosive process and estimation of the corrosion propagation. This study investigated the apparent electrical resistivity of concrete mixes with white Portland cement and with and without blast-furnace slag using Wenner’s four-electrode method. The compressive strength of concrete cylinders and the electrical conductivity of the pore solution were tested. Examined slag contents were 50% and 70% by mass and the results were compared to reference mixtures of 100% white Portland cement and 100% grey Portland cement, as well as to mixtures with equal percentages of slag and grey Portland cement. Larger amounts of slag resulted in increased electrical resistivity and decreases in the electrical conductivity of the pore solution, when compared to the reference concretes. The mixture made of 50% slag and 50% white Portland cement showed, on average, compressive resistance levels between 35 MPa and 60 MPa, electrical resistivity values that were approximately five times greater, costs that were 14.6% less per m3, and whiteness similar to the reference concrete. These results indicate that white Portland cement can be partially substituted by blast-furnace slag.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号