首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   3篇
化学工业   11篇
机械仪表   8篇
能源动力   5篇
轻工业   3篇
无线电   3篇
一般工业技术   16篇
自动化技术   3篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2008年   4篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
1.
Vibrational spectroscopy techniques are widely used in analytical chemistry, physics and biology. The most prominent techniques are Raman and Fourier-transform infrared spectroscopy (FTIR). Combining both techniques delivers complementary information of the test sample. We present the design, construction, and calibration of a novel bimodal spectroscopy system featuring both Raman and infrared measurements simultaneously on the same sample without mutual interference. The optomechanical design provides a modular flexible system for solid and liquid samples and different configurations for Raman. As a novel feature, the Raman module can be operated off-axis for optical sectioning. The calibrated system demonstrates high sensitivity, precision, and resolution for simultaneous operation of both techniques and shows excellent calibration curves with coefficients of determination greater than 0.96. We demonstrate the ability to simultaneously measure Raman and infrared spectra of complex biological material using bovine serum albumin. The performance competes with commercial systems; moreover, it presents the additional advantage of simultaneously operating Raman and infrared techniques. To the best of our knowledge, it is the first demonstration of a combined Raman-infrared system that can analyze the same sample volume and obtain optically sectioned Raman signals. Additionally, quantitative comparison of confocality of backscattering micro-Raman and off-axis Raman was performed for the first time.  相似文献   
2.
Nickel alloys are extensively used in aerospace, automotive, marine, nuclear, petro-chemical and food processing industries due to properties like high strength, resistance to heat, resistance to corrosion, etc. However, machining of these alloys pose many challenges in machining such as: work hardening, high temperatures at the cutting zone, rapid tool wear, reduced tool-life, etc. Attempts are made to overcome these challenges by using various cryogenic techniques. This paper, therefore discusses different techniques such as cryogenic cooling, cryogenic treatment of tool and simultaneous use of cryogenic cooling of tool and heating of workpiece (hybrid technique) and their effects on machinability of Nickel alloys with the help of indicators like tool-life, surface roughness, residual stresses, etc. It is concluded that cryogenic techniques are helpful in improving the machining performance by way of improvement in tool-life and surface quality. This happens due to better cooling by cryogen and improved tool properties after cryogenic treatment. However, based on the published works, it is not possible to decide about the following: correct amount of cryogen required for cooling, appropriate cryogenic tool treatment cycle to be used and the best parameters for machining of Nickel alloys. Therefore, future research should focus on these aspects.  相似文献   
3.
A scheme for microscopy of relatively large-size objects by using Fresnel zone plate (FZP) coded imaging (FZ-PCI) is digitally demonstrated. The limit on the source size in zone-plate-based microscopy comes from interference of out-of-focus multidiffraction orders of the FZP with the focused-order image. From the study of the angular spectrum of the coded image, it is shown that noise contribution from higher orders to a lower-order image can be digitally suppressed by selective propagation of spatial frequencies. Similarly, noise from aliasing and noise from lower orders to a higher-order image can be reduced by spatially limiting the coded image. To my knowledge for the first time, the results of digitally performed FZPCI-based microscopy of an object that is three times larger than the first zone of the FZP with a resolution better than 2 microm are presented and discussed.  相似文献   
4.
Superior manufacturing capability provides long lasting competitive benefits to a company in the market. It is thus imperative to have an instrument to assess the manufacturing capability of companies. However, empirically tested and reliable tools for the purpose of evaluation of manufacturing capability along different decision areas are scarcely available in the literature. This paper develops questionnaires based on generally accepted principle of instrument design to assess the manufacturing capabilities along different decision areas for four categorization schemes of manufacturing decision areas reported in the literature. The reliability and validity of all four instruments are assessed through responses from managers of 32 manufacturing units and are found to be satisfactory for most of the factors. The criterion validity is found to be fairly good for all the four instruments.  相似文献   
5.
An alkaline thermotolerant bacterial lipase of Bacillus coagulans MTCC‐6375 was purified and immobilized on a methacrylic acid and dodecyl methacrylate (MAc‐DMA) hydrogel. The lipase was optimally bound to the matrix after 20 min of incubation at 55°C and pH 9 under shaking conditions. The matrix‐bound lipase retained approximately 50% of its initial activity at 70–80°C after 3 h of incubation. The immobilized lipase was highly active on medium chain length p‐nitrophenyl acyl ester (C: 8, p‐nitrophenyl caprylate) than other p‐nitrophenyl acyl esters. The presence of Fe3+, NH4+, K+, and Zn2+ ions at 1 mM concentration in the reaction mixture resulted in a profound increase in the activity of immobilized lipase. Most of the detergents partially reduced the activity of the immobilized lipase. The immobilized lipase performed ~62% conversion in 12 h at temperature 55°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1420–1426, 2006  相似文献   
6.
Self-assembly of peptides provides the possibility of achieving relatively long range order on surfaces. These ordered peptides can also form channels that can be used as conduction channels. In the past, studies were focused on electron conduction through the secondary structure and amine bond of peptides and these restrict conduction of electrons over a short range (a few nanometers). In this work, we demonstrate the realization of electron conduction over a longer range of a few hundred nanometers via π-π stacking of the phenyl groups in the tyrosine residue of a single peptide. The peptide used in this work was designed with a phenyl ring for π-π stacking at one end and a carboxylic group at the other end for binding to aminopropyltriethoxysilane (APTES) treated silicon wafer. The distance between the peptides is controlled by a disulfide bond formed between neighboring cysteine residue and also by the amine groups of aminopropyltriethoxysilane. We demonstrate that the self-assembled peptide is conducting in the dry state over hundreds of nanometers, realizing the possibility of using peptide as a molecular wire.  相似文献   
7.
Recently, the Dynamic Spectrum Access (DSA) techniques are proposed to solve the problem of spectrum scarcity and help to use the limited spectrum resource as effectively as possible. The current ongoing spectrum reform opens up the possibilities to exploit the DSA techniques. This paper aims to provide a critical review on the various ongoing efforts towards the use of DSA concept for the frequency management of future wireless communications systems, especially from the Cognitive Radio (CR) perspective. The CR aims for an efficient and dynamic access to the spectrum, and provides a new method of spectrum management. This paper also highlights the various challenges associated with CR in order to realize the concept of DSA.  相似文献   
8.
Characteristics of electrocodeposited Ni-Co-SiC composite coating   总被引:1,自引:0,他引:1  
Electrodeposited composites are gaining importance for their advantages including low cost, ease and simplicity of operation to tailor made coatings for tribological applications. Generally, composites containing carbides (like SiC) are preferred for high wear resistance along with increased hardness, improved corrosion resistance, and high temperature oxidation resistance as compared to alloy and pure metal electroplating. In the present work, electrolytic codeposition technique was adopted in the deposition of Ni-Co-SiC composite coating on mild steel substrate, using nickel alloyed with cobalt as the binder phase with SiC as dispersed particles. To improve the properties of coating further, Cr plating was also performed. Since the particle size and volume percent variation of dispersoid have great importance in codeposition, so the effect of these two variables on the process of codeposition and properties was observed. Morphological studies of Ni-Co-SiC coating were carried out with scanning electron microscopy and X-ray diffraction analysis to correlate the mechanical and corrosion behaviour of the coating.  相似文献   
9.
Donthu S  Pan Z  Myers B  Shekhawat G  Wu N  Dravid V 《Nano letters》2005,5(9):1710-1715
We demonstrate a facile approach for site-specific fabrication of organic, inorganic, and hybrid solid-state nanostructures through a novel combination of electron-beam lithography (eBL) and spin coating of liquid and sol-gel precursors, termed soft eBL. By using eBL patterned resists as masks in combination with a low cost process such as spin coating, directed growth of nanostructures with controlled dimensions is achieved without the need for the costly and difficult process step of etching ceramics. The highly versatile nature of the scheme is highlighted through the fabrication of nanostructures of a variety of materials such as ferroelectric, optoelectronic, and conducting polymeric materials at different length scales and spatial densities on a multitude of substrates.  相似文献   
10.
Nanomaterials have potential medical applications, for example in the area of drug delivery, and their possible adverse effects and cytotoxicity are curently receiving attention. Inhalation of nanoparticles is of great concern, because nanoparticles can be easily aerosolized. Imaging techniques that can visualize local populations of nanoparticles at nanometre resolution within the structures of cells are therefore important. Here we show that cells obtained from mice exposed to single-walled carbon nanohorns can be probed using a scanning probe microscopy technique called scanning near field ultrasonic holography. The nanohorns were observed inside the cells, and this was further confirmed using micro Raman spectroscopy. Scanning near field ultrasonic holography is a useful technique for probing the interactions of engineered nanomaterials in biological systems, which will greatly benefit areas in drug delivery and nanotoxicology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号