首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   4篇
化学工业   21篇
金属工艺   5篇
机械仪表   7篇
能源动力   7篇
轻工业   8篇
石油天然气   2篇
无线电   3篇
一般工业技术   23篇
冶金工业   4篇
原子能技术   1篇
自动化技术   6篇
  2023年   2篇
  2022年   4篇
  2021年   10篇
  2020年   3篇
  2019年   1篇
  2018年   5篇
  2017年   6篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2013年   12篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
1.
Zinc (Zn), the second-most necessary trace element, is abundant in the human body. The human body lacks the capacity to store Zn; hence, the dietary intake of Zn is essential for various functions and metabolism. The uptake of Zn during its transport through the body is important for proper development of the three major accessory sex glands: the testis, epididymis, and prostate. It plays key roles in the initial stages of germ cell development and spermatogenesis, sperm cell development and maturation, ejaculation, liquefaction, the binding of spermatozoa and prostasomes, capacitation, and fertilization. The prostate releases more Zn into the seminal plasma during ejaculation, and it plays a significant role in sperm release and motility. During the maternal, labor, perinatal, and neonatal periods, the part of Zn is vital. The average dietary intake of Zn is in the range of 8–12 mg/day in developing countries during the maternal period. Globally, the dietary intake of Zn varies for pregnant and lactating mothers, but the average Zn intake is in the range of 9.6–11.2 mg/day. The absence of Zn and the consequences of this have been discussed using critical evidence. The events and functions of Zn related to successful fertilization have been summarized in detail. Briefly, our current review emphasizes the role of Zn at each stage of human reproduction, from the spermatogenesis process to childbirth. The role of Zn and its supplementation in in vitro fertilization (IVF) opens opportunities for future studies on reproductive biology.  相似文献   
2.
Strategically fabricated theranostic nanocarrier delivery system is an unmet need in personalized medicine. Herein, this study reports a versatile folate receptor (FR) targeted nanoenvelope delivery system (TNEDS) fabricated with gold core silica shell followed by chitosan–folic acid conjugate surface functionalization by for precise loading of doxorubicin (Dox), resembled as Au@SiO2‐Dox‐CS‐FA. TNEDS possesses up to 90% Dox loading efficiency and internalized through endocytosis pathway leading to pH and redox‐sensitive release kinetics. The superior FR‐targeted cytotoxicity is evaluated by the nanocarrier in comparison with US Food and Drug Administration (FDA)‐approved liposomal Dox conjugate, Lipodox. Moreover, TNEDS exhibits theranostic features through caspase‐mediated apoptosis and envisages high surface plasmon resonance enabling the nanoconstruct as a promising surface enhanced Raman scattering (SERS) nanotag. Minuscule changes in the biochemical components inside cells exerted by the TNEDS along with the Dox release are evaluated explicitly in a time‐dependent fashion using bimodal SERS/fluorescence nanoprobe. Finally, TNEDS displays superior antitumor response in FR‐positive ascites as well as solid tumor syngraft mouse models. Therefore, this futuristic TNEDS is expected to be a potential alternative as a clinically relevant theranostic nanomedicine to effectively combat neoplasia.  相似文献   
3.
Rapid Prototyping (RP) is a technology based on a “divide-and-conquer” strategy that enables automatic physical realization of a design without any special tooling. However, existing RP processes suffer from staircase defects since they are all based on 2.5-axis kinematics. To minimize the error due to staircase defects parts are normally built from very thin layers typically with thickness values of 0.010 to 0.300 mm. Therefore, hundreds of layers are required to produce a typical object making RP a slow and costly process. To overcome these limitations, a new RP process called Segmented Object Manufacturing (SOM) is proposed in this paper. SOM makes use of three-axis kinematics in conjunction with a novel slicing method. Slicing in SOM is based on certain visibility-based considerations and is independent of the part accuracy. Since only a few thick layers are used in the SOM technique, a part can be produced faster and cheaper with an accuracy comparable to that of CNC machining.  相似文献   
4.
Nano-Micro Letters - Magnesia (MgO) nanoparticles were produced from magnesite ore (MgCO3) using ball mill. The crystalline size, morphology and specific SSA were characterized by X-ray diffraction...  相似文献   
5.
X-ray diffraction, thermogravimetric analysis, scanning electron microscopy and energy-dispersive spectroscopy studies were performed with molding sand and sugar industry fly ash to evaluate and compare their physical properties. We noted that several physical properties of sugar industry fly ash and molding sand were similar. We then tested the permeability, green compression strength and dry compression strength of various compositions of sugar industry fly ash and bentonite to explore their potential as an alternative to molding sand, thereby reducing the dependency on the latter, as well as to suggest an effective way for disposal of fly ash from sugar industry. We also found that quality aluminium castings could be produced using fly ash, which effectively replaced 24% of molding sand in the foundry, thereby reducing the cost of production and increasing the surface finish of castings.  相似文献   
6.
We report the rapid microwave-assisted hydrothermal synthesis of mesoporous hydroxyapatite (HAp) nanocrystals with controlled size, morphology, and surface area using various organic modifiers as regulators. The products were analyzed for their crystalline nature, phase purity, morphology, particle size and pore size distribution. Results indicated that ascorbic acid, cetyltrimethyl ammonium bromide (CTAB) and polyvinylpyrrolidone (PVP) play an important role to obtain needle like, rod like and fiber like mesoporous HAp nanocrystals with different specific surface area by controlling growth habit of HAp along c-axis. In addition, the prepared samples were B-type carbonated HAp similar to bone minerals. Therefore, the present approach can be a promising way to obtain precursor for making tissue engineering scaffolds, drug/protein delivery carriers and bone fillers with tunable characteristics.  相似文献   
7.
We have synthesized NiCo2O4 nanoparticles (NCO NPs) using an ascorbic acid-assisted co-precipitation method for the first time. When NCO NPs are used as an anode material for lithium-ion batteries, the cell exhibits superior lithium storage properties, such as high capacity (700 mA h g?1 after 300 cycles at 200 mA g?1), excellent rate capabilities (applied current density range 100–1200 mA g?1), and impressive cycling stability (at 1200 mA g?1 up to 650 cycles). The enhanced electrochemical properties of NCO NPs are due to the nanometer dimensions which not only offers a smooth charge-transport pathway and short diffusion paths of the lithium ions but also adequate spaces for volume expansion during Li storage. Hence, this eco-friendly synthesis approach will provide a new strategy for the synthesis of various nanostructured metal oxide compounds, for energy conversion and storage systems applications.  相似文献   
8.
Here we present a high-resolution chromosomal spectral map derived from synchrotron-based soft X-ray spectromicroscopy applied to quinoa species. The label-free characterization of quinoa metaphase chromosomes shows that it consists of organized substructures of DNA-protein complex. The analysis of spectra of chromosomes using the scanning transmission X-ray microscope (STXM) and its superposition of the pattern with the atomic force microscopy (AFM) and scanning electron microscopy (SEM) images proves that it is possible to precisely locate the gene loci and the DNA packaging inside the chromosomes. STXM has been successfully used to distinguish and quantify the DNA and protein components inside the quinoa chromosomes by visualizing the interphase at up to 30-nm spatial resolution. Our study represents the successful attempt of non-intrusive interrogation and integrating imaging techniques of chromosomes using synchrotron STXM and AFM techniques. The methodology developed for 3-D imaging of chromosomes with chemical specificity and temporal resolution will allow the nanoscale imaging tools to emerge from scientific research and development into broad practical applications such as gene loci tools and biomarker libraries.  相似文献   
9.
10.
Wollastonite nanopowder (β-CaSiO3) is the most nanoceramic powder that is most frequently applied in biomedical applications due to its good bioactivity and biocompatibility. Although the preparation of wollastonite in a solid-state is distinguished as a simple and cheap method with large-scale production, it requires high temperatures (=1400 °C) and consumes quite a long time. The wet methods are considered the best when it comes to preparing the wollastonite nanopowders. However, it has some drawbacks such as its extravagant raw materials and its shorting in preparation which inhibits successful coverage for large-scale production. Herein facile, one-pot modified co-precipitation approach with an easy procedure, shorter reaction time, and in-expensive precursor sodium meta-silicate-pentahydrate and CaCO3 has been utilized for large-scale production of wollastonite nano-powders (76–150 nm). The precipitated product was calcined at different temperatures (800, 900, 1000, and 1100 °C). The phase composition and microstructure of the calcined powders were investigated. They were analyzed by XRD, FTIR, FESEM, and HRTEM. The in-vitro bioactivities of the calcined powders at 1000 &1100 °C were investigated by analyzing their abilities to form apatite on their surface after 21 days in SBF. The apatite mineralization of the powder surfaces was examined through FESEM, EDX, and Raman spectra. The results show that a single-phase wollastonite got formed at all calcined temperatures with a unique silkworm texture. SBF in-vitro test states the formation of HA on the powder surface. Therefore, these powders are expected to be valuable and promising for biomedical applications such as coating and bio cement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号