首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
化学工业   5篇
机械仪表   1篇
建筑科学   2篇
轻工业   6篇
一般工业技术   7篇
冶金工业   6篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2016年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
排序方式: 共有27条查询结果,搜索用时 31 毫秒
1.
2.
Titanium carbonitride (TiCN) is a popular hard coating for carbide cutting tools in various applications. The properties of TiCN are within its composition and can be controlled by maintaining the C–N ratio within the coating to a certain level. This paper studied the influence of carbon content and coating composition within TiCxN1?x coatings with regard to their mechanical properties. The substrate used was tungsten carbide (WC-6Co), which was prepared in-house through a powder metallurgy process, while the TiCxN1?x coatings were deposited in-house using cathodic arc physical vapour deposition (CAPVD). TiCxN1?x coatings improved the mechanical properties of carbide inserts. An increase in carbon content within TiCxN1?x coatings improved surface lubricity, reduced coefficient of friction, improved surface microhardness and increased Young's modulus, but reduced thermal conductivity of carbide inserts. The colour of TiCxN1?x coatings also changed with carbon content.  相似文献   
3.
The stability of nano-zirconia 3YSZ powder in suspension was extensively studied by the colloidal method, and the optimum sintering temperature of the green sample fabricated through slip casting was determined. Zirconia suspensions with 10 vol% powder loading were prepared with distilled water, and HNO3 was used to adjust the pH of the suspension to pH 1–6. All of the suspensions were subjected to sedimentation test, and the results showed that the suspensions adjusted to pH 2 had the lowest sediment volume. This finding indicates that a suspension with pH 2 produces higher packing density. Viscosity test was carried out for the suspensions added with dispersant ranging from 0.3 wt% to 0.7 wt% polyethyleneimine (PEI) with and without pH adjustment. The suspension containing 0.5 wt% PEI with pH 2 adjustment produced the lowest viscosity because of interparticle bond breakage in the aggregates, thus forming colloidally stable suspensions. The zirconia suspension containing 0.5 wt% PEI and whose pH was adjusted to pH 2 was chosen to be slip casted into cylindrical shape. Green samples were sintered at various sintering temperatures that ranged from 1100 °C to 1500 °C through a two-step sintering method. The sample sintered at 1500 °C was found to be porosite-free, and its highest relative density was 99.6% of the theoretical density. Morphological studies detected pores in the microstructure of the samples sintered at low sintering temperatures (1100 and 1200 °C). By contrast, the samples sintered at 1400 and 1500 °C were fully densified. However, the grain size of the sample sintered at 1500 °C was 230 nm, which indicated excessive grain growth. The Vickers hardness of the sample sintered at 1400 °C was found to be highest (12.9 GPa) and comparable to results found in the literature.  相似文献   
4.
This work proposes an effective method for dispersion of zirconia suspension for dental block preparation and optimizes the cold isostatic pressing (CIP) pressure to improve the densification of slip-casted zirconia blocks. Two batches of 44 wt% zirconia suspension were prepared using distilled water in a pH 2 medium containing 0.5 wt% polyethyleneimine as dispersant. The first batch was sonicated for different durations (from 5 min to 30 min), and the second batch was dispersed through ball milling at rotational speeds of 200, 300, and 400 rpm for 60, 90, and 120 min. All suspensions were subjected to sedimentation test and particle size measurement. Results revealed that the optimum ultrasonication duration was 10 min, which yielded the smallest particle size of 133 nm. Ball milling at 300 rpm for 120 min achieved the maximum dispersion of particles, with an average size of 75 nm. Under the optimum conditions of ultrasonication duration, ball milling duration, and ball milling speed, the particle size decreased to 48 nm, which is close to the primary particle size. These dispersion techniques and parameters were selected for preparing a suspension to be consolidated into blocks through slip casting and were enhanced through CIP at pressure ranging from 100 MPa to 300 MPa. CIP compaction at 250 MPa significantly increased the shrinkage percentage of green zirconia blocks, with pore radius decreased to 18 nm. The density of zirconia pressed at 250 MPa and presintered at a low temperature of 950 °C was 59% of the theoretical density and was higher than that of commercial presintered blocks. Thus, CIP should be conducted under a compaction pressure of 250 MPa to produce dense and homogeneous zirconia blocks.  相似文献   
5.
In this paper a procedure for analytical prediction of joint shear strength of interior beam-column joints, strengthened with externally bonded fiber-reinforced polymer (FRP) sheets, has been presented. The procedure is based on the formulation available in the literature. To implement the available formulation for shear capacity prediction a computer program has been developed. Using this program shear capacity of the joint and joint shear stress variation at various stages of loading have been predicted and compared with experimental observations; presented in Part I of this study. Predictions show good agreement with experimental test results. The formulation is further extended to predict diagonal tensile stresses in the joint. The effectiveness of FRP quantity on joint shear strength and on various strains has been studied on parametric basis. It is observed that even a low quantity of FRP can enhance shear capacity of the joint significantly and its effectiveness can be further increased if debonding is suppressed (e.g., through mechanical anchorages). Effect of column axial load on shear strength of the joint has also been studied. It is observed that axial load increases the confinement of the joint core, which in turn increases the shear capacity of the joint.  相似文献   
6.
A Brownian dynamics simulation was carried out for a spherical nanoparticle with polymer chains tethered to its surface. These simulations are relevant to understanding the transport properties of polymer-stabilized nanoparticles in environmental and other applications. Hydrodynamic interactions (HI) were taken into account to properly describe the diffusion properties of a stabilized particle. HI are important in this context because of the close proximity of the surface-tethered polymer chains. HI were implemented using a method introduced by Fixman (1986 Macromolecules 19 1204), which uses a Chebyshev polynomial expansion to calculate the square root of the diffusion tensor. Simulation predictions were compared to published experimental data for the hydrodynamic radius of a silica particle stabilized by polystyrene tethered chains, and good agreement was achieved. A relationship that allows polymer-stabilized particles with arbitrary polymer-chain densities to be modelled is developed.  相似文献   
7.
This paper investigates the residual tensile properties of newly developed glass fiber reinforced polymer (GFRP) bars after being subjected to elevated temperatures for different periods. A total of 120 GFRP specimens were tested in this study. Half of the samples were covered with concrete while the other half were bare bars. The specimens were subjected to three different controlled temperatures (100, 200 and 300 °C) for three different periods (1, 2, and 3 h). Test results showed that almost no losses were observed in the tensile modulus after all exposure periods and temperatures. Losses in the tensile strength, proportional to the level of temperature and exposure period, were recorded. The bars with concrete cover showed higher residual tensile strength compared to their counterparts without coating. The concrete cover was more effective at the lowest temperature level (100 °C) and at the shortest time period (1 h). Scanning Electronic Microscopy (SEM) technique was also used to investigate the effect of elevated temperature on the degradation mechanism of the GFRP bars. The results showed that increasing the temperature level affected the resin matrix surrounding the glass fibers and consequently affected the bond between the fibers and the matrix.  相似文献   
8.
In this paper, the efficiency and effectiveness of carbon-fiber-reinforced polymer (CFRP) sheets for upgrading the shear strength and ductility of a seismically deficient exterior beam-column joint were studied and compared with an American Concrete Institute (ACI)-based design joint specimen. One as-built joint specimen, representing the preseismic code design and construction practice for joints and one ACI-based design joint specimen, satisfying the seismic design requirements of the current code of practice were cast. The as-built specimen was used as baseline (control) specimen. These two specimens (i.e., the as-built control and the ACI-based specimens) were subjected to cyclic lateral load histories to induce damage equivalent to damage expected from a severe earthquake. The damaged control specimen was then repaired by filling its cracks with epoxy and externally bonding CFRP sheets to the joint, the beam, and part of the column regions. This specimen was identified as the repaired specimen. The repaired specimen was subjected to a similar cyclic lateral load history, and its response history was recorded. The response histories of the as-built control, the repaired, and the ACI-based design specimen were then compared. The test results demonstrated that externally bonded CFRP sheets can effectively improve both the shear strength and the deformation capacity of seismically deficient and damaged beam-column joints to a state comparable to the ACI-based design joint.  相似文献   
9.
Coating a cutting tool improves wear resistance and prolongs tool life. Coating performance strongly depends on the mechanical and chemical properties of the coating material. In a machining process, the type of selected coating depends on the cutting condition because of the properties of the applied coating material. In addition, many factors, such as coating thickness, composition ratio, sequences of layers in multilayer coatings, and the deposition method influence the performance of a coating. In this study, the mechanical properties of TiCN and TiCN/ZrN were investigated using a ball on disk test. The substrate material made from a carbide-based cutting tool was also developed in-house. The analysis performed shows that the performances of TiCN and TiCN/ZrN coatings were found to be comparable to that of the commercial TiN-coated carbide-based cutting tool. Both the in-house and commercial coated inserts had significantly lower coefficient of friction than uncoated inserts, and the friction coefficient of TiCN coatings was constantly slightly lower than that of TiN coatings. Moreover, the coefficient of friction of the in-house developed TiCN was slightly lower than that of commercial TiN coating. However, the coefficient of friction of the in-house developed uncoated carbide inserts was slightly higher than that of commercial uncoated carbide inserts.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号