首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3534篇
  免费   160篇
  国内免费   21篇
电工技术   42篇
综合类   7篇
化学工业   896篇
金属工艺   130篇
机械仪表   107篇
建筑科学   59篇
矿业工程   2篇
能源动力   200篇
轻工业   135篇
水利工程   24篇
石油天然气   10篇
无线电   526篇
一般工业技术   789篇
冶金工业   214篇
原子能技术   19篇
自动化技术   555篇
  2024年   7篇
  2023年   71篇
  2022年   124篇
  2021年   148篇
  2020年   132篇
  2019年   119篇
  2018年   152篇
  2017年   151篇
  2016年   148篇
  2015年   94篇
  2014年   149篇
  2013年   298篇
  2012年   171篇
  2011年   201篇
  2010年   171篇
  2009年   159篇
  2008年   137篇
  2007年   131篇
  2006年   116篇
  2005年   73篇
  2004年   62篇
  2003年   53篇
  2002年   59篇
  2001年   59篇
  2000年   40篇
  1999年   42篇
  1998年   48篇
  1997年   62篇
  1996年   48篇
  1995年   40篇
  1994年   47篇
  1993年   42篇
  1992年   27篇
  1991年   29篇
  1990年   17篇
  1989年   10篇
  1988年   11篇
  1987年   12篇
  1986年   20篇
  1985年   21篇
  1984年   26篇
  1983年   17篇
  1982年   17篇
  1981年   24篇
  1980年   20篇
  1979年   21篇
  1978年   19篇
  1977年   17篇
  1976年   15篇
  1975年   8篇
排序方式: 共有3715条查询结果,搜索用时 359 毫秒
1.
Recent advancements in isolation and stacking of layered van der Waals materials have created an unprecedented paradigm for demonstrating varieties of 2D quantum materials. Rationally designed van der Waals heterostructures composed of monolayer transition-metal dichalcogenides (TMDs) and few-layer hBN show several unique optoelectronic features driven by correlations. However, entangled superradiant excitonic species in such systems have not been observed before. In this report, it is demonstrated that strong suppression of phonon population at low temperature results in a formation of a coherent excitonic-dipoles ensemble in the heterostructure, and the collective oscillation of those dipoles stimulates a robust phase synchronized ultra-narrow band superradiant emission even at extremely low pumping intensity. Such emitters are in high demand for a multitude of applications, including fundamental research on many-body correlations and other state-of-the-art technologies. This timely demonstration paves the way for further exploration of ultralow-threshold quantum-emitting devices with unmatched design freedom and spectral tunability.  相似文献   
2.
We considered the magnetohydrodynamic (MHD) free convective flow of an incompressible electrically conducting viscous fluid past an infinite vertical permeable porous plate with a uniform transverse magnetic field, heat source and chemical reaction in a rotating frame taking Hall current effects into account. The momentum equations for the fluid flow during absorbent medium are controlled by the Brinkman model. Through the undisturbed state, both the plate and fluid are in a rigid body rotation by the uniform angular velocity perpendicular to an infinite vertical plate. The perpendicular surface is subject to the homogeneous invariable suction at a right angle to it and the heat on the surface varies about a non-zero unvarying average whereas the warmth of complimentary flow is invariable. The systematic solutions of the velocity, temperature, and concentration distributions are acquired systematically by utilizing the perturbation method. The velocity expressions consist of steady-state and fluctuating situations. It is revealed that the steady part of the velocity field has a three-layer characteristic while the oscillatory part of the fluid field exhibits a multi-layer characteristic. The influence of various governing flow parameters on the velocity, temperature, and concentration are analyzed graphically. We also discuss computational results for the skin friction, Nusselt number, and Sherwood number in the tabular forms.  相似文献   
3.
4.
Lund  Brady D.  Maurya  Sanjay Kumar 《Scientometrics》2020,125(3):2491-2504
Scientometrics - This study investigates a potential relationship between highly-cited scholarly papers and the number of citations received by other papers with which they share a journal issue....  相似文献   
5.
An explicit extraction of the retinal vessel is a standout amongst the most significant errands in the field of medical imaging to analyze both the ophthalmological infections, for example, Glaucoma, Diabetic Retinopathy (DR), Retinopathy of Prematurity (ROP), Age-Related Macular Degeneration (AMD) as well as non retinal sickness such as stroke, hypertension and cardiovascular diseases. The state of the retinal vasculature is a significant indicative element in the field of ophthalmology. Retinal vessel extraction in fundus imaging is a difficult task because of varying size vessels, moderately low distinction, and presence of pathologies such as hemorrhages, microaneurysms etc. Manual vessel extraction is a challenging task due to the complicated nature of the retinal vessel structure, which also needs strong skill set and training. In this paper, a supervised technique for blood vessel extraction in retinal images using Modified Adaboost Extreme Learning Machine (MAD-ELM) is proposed. Firstly, the fundus image preprocessing is done for contrast enhancement and in-homogeneity correction. Then, a set of core features is extracted, and the best features are selected using “minimal Redundancy-maximum Relevance (mRmR).” Later, using MAD-ELM method vessels and non vessels are classified. DRIVE and DR-HAGIS datasets are used for the evaluation of the proposed method. The algorithm’s performance is assessed based on accuracy, sensitivity and specificity. The proposed technique attains accuracy of 0.9619 on the DRIVE database and 0.9519 on DR-HAGIS database, which contains pathological images. Our results show that, in addition to healthy retinal images, the proposed method performs well in extracting blood vessels from pathological images and is therefore comparable with state of the art methods.  相似文献   
6.
7.
8.
Proficiency on underlying mechanism of rubber-metal adhesion has been increased significantly in the last few decades. Researchers have investigated the effect of various ingredients, such as hexamethoxymethyl melamine, resorcinol, cobalt stearate, and silica, on rubber-metal interface. The role of each ingredient on rubber-metal interfacial adhesion is still a subject of scrutiny. In this article, a typical belt skim compound of truck radial tire is selected and the effect of each adhesive ingredient on adhesion strength is explored. Out of these ingredients, the effect of cobalt stearate is found noteworthy. It has improved adhesion strength by 12% (without aging) and by 11% (humid-aged), respectively, over control compound. For detailed understanding of the effect of cobalt stearate on adhesion, scanning electron microscopy and energy dispersive spectroscopy are utilized to ascertain the rubber coverage and distribution of elements. X-ray photoelectron spectroscopy results helped us to understand the impact of CuXS layer depth on rubber-metal adhesion. The depth profile of the CuXS layer was found to be one of the dominant factors of rubber-metal adhesion retention. Thus, this study has made an attempt to find the impact of different adhesive ingredients on the formation of CuXS layer depth at rubber-metal interface and establish a correlation with adhesion strength simultaneously.  相似文献   
9.
A transformational approach for proving termination of parallel logic programs such as GHC programs is proposed. A transformation from GHC programs to term rewriting systems is developed; it exploits the fact that unifications in GHC-resolution correspond to matchings. The termination of a GHC program for a class of queries is implied by the termination of the resulting rewrite system. This approach facilitates the applicability of a wide range of termination techniques developed for rewrite systems in proving termination of GHC programs. The method consists of three steps: (a) deriving moding information from a given GHC program, (b) transforming the GHC program into a term rewriting system using the moding information, and finally (c) proving termination of the resulting rewrite system. Using this method, the termination of many benchmark GHC programs such as quick-sort, merge-sort, merge, split, fair-split and append, etc., can be proved. This is a revised and extended version of Ref. 12). The work was partially supported by the NSF Indo-US grant INT-9416687 Kapur was partially supported by NSF Grant nos. CCR-8906678 and INT-9014074. M. R. K. Krishna Rao, Ph.D.: He currently works as a senior research fellow at Griffith University, Brisbane, Australia. His current interests are in the areas of logic programming, modular aspects and noncopying implementations of term rewriting, learning logic programs from examples and conuterexamples and dynamics of mental states in rational agent architectures. He received his Ph.D in computer science from Tata Institute of Fundamental Research (TIFR), Bombay in 1993 and worked at TIFR and Max Planck Institut für Informatik, Saarbrücken until January 1997. Deepak Kapur, Ph.D.: He currently works as a professor at the State University of New York at Albany. His research interests are in the areas of automated reasoning, term rewriting, constraint solving, algebraic and geometric reasoning and its applications in computer vision, symbolic computation, formal methods, specification and verification. He obtained his Ph.D. in Computer Science from MIT in 1980. He worked at General Electric Corporate Research and Development until 1987. Prof. Kapur is the editor-in-chief of the Journal of Automated Reasoning. He also serves on the editorial boards of Journal of Logic Programming, Journal on Constraints, and Journal of Applicable Algebra in Engineering, Communication and Computer Science. R. K. Shyamasundar, Ph.D.: He currently works as a professor at Tata Institute of Fundamental Research (TIFR), Bombay. His current intersts are in the areas of logic programming, reactive and real time programming, constraint solving, formal methods, specification and verification. He received his Ph.D in computer science from Indian Institute of Science, Bangalore in 1975 and has been a faculty member at Tata Institute of Fundamental Research since then. He has been a visiting/regular faculty member at Technological University of Eindhoven, University of Utrecht, IBM TJ Watson Research Centre, Pennsylvania State University, University of Illinois at Urbana-Champaign, INRIA and ENSMP, France. He has served on (and chaired) Program Committees of many International Conferences and has been on the Editorial Committees.  相似文献   
10.
Corner detection is a low-level feature detection operator that is of great use in image processing applications, for example, optical flow and structure from motion by image correspondence. The detection of corners is a computationally intensive operation. Past implementations of corner detection techniques have been restricted to software. In this paper we propose an efficient very large-scale integration (VLSI) architecture for detection of corners in images. The corner detection technique is based on the half-edge concept and the first directional derivative of Gaussian. Apart from the location of the corner points, the algorithm also computes the corner orientation and the corner angle and outputs the edge map of the image. The symmetrical properties of the masks are utilized to reduce the number of convolutions effectively, from eight to two. Therefore, the number of multiplications required per pixel is reduced from 1800 to 392. Thus, the proposed architecture yields a speed-up factor of 4.6 over conventional convolution architectures. The architecture uses the principles of pipelining and parallelism and can be implemented in VLSI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号