首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3180篇
  免费   214篇
  国内免费   4篇
电工技术   46篇
综合类   2篇
化学工业   911篇
金属工艺   46篇
机械仪表   112篇
建筑科学   102篇
矿业工程   8篇
能源动力   141篇
轻工业   471篇
水利工程   22篇
石油天然气   32篇
无线电   201篇
一般工业技术   566篇
冶金工业   227篇
原子能技术   27篇
自动化技术   484篇
  2024年   9篇
  2023年   38篇
  2022年   101篇
  2021年   144篇
  2020年   111篇
  2019年   135篇
  2018年   124篇
  2017年   143篇
  2016年   135篇
  2015年   88篇
  2014年   143篇
  2013年   273篇
  2012年   210篇
  2011年   255篇
  2010年   189篇
  2009年   187篇
  2008年   158篇
  2007年   136篇
  2006年   106篇
  2005年   76篇
  2004年   70篇
  2003年   61篇
  2002年   61篇
  2001年   48篇
  2000年   35篇
  1999年   24篇
  1998年   63篇
  1997年   72篇
  1996年   40篇
  1995年   28篇
  1994年   15篇
  1993年   20篇
  1992年   19篇
  1991年   8篇
  1990年   14篇
  1989年   8篇
  1988年   5篇
  1987年   7篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   7篇
  1981年   6篇
  1980年   4篇
  1979年   1篇
  1978年   4篇
  1977年   2篇
  1976年   3篇
  1974年   1篇
  1971年   1篇
排序方式: 共有3398条查询结果,搜索用时 109 毫秒
1.
This work presents the dielectric properties of YNbO4 (YNO)–TiO2 composites in the microwave range. X-ray diffraction analysis demonstrates that the addition of TiO2 to YNO results in the formation of a Y(Nb0.5Ti0.5)2O6 phase. In the microwave range, the values of permittivity and dielectric loss did not present major changes with the increment of TiO2. Moreover, the addition of TiO2 results in an improvement in the thermal stability of YNO, with YNO63 demonstrating a resonant frequency of ?8.96 ppm.°C?1. We utilised numerical simulations to evaluate the behaviour of these materials as dielectric resonator antennae and it is found that they exhibit a reflection coefficient below ?10 dB at the resonant frequency, with a realised gain of 4.94 – 5.76 dBi, a bandwidth of 665–1050 MHz and a radiation efficiency above 84%. Our results indicate that YNO–TiO2 composites are interesting candidates for microwave operating devices.  相似文献   
2.
The present study reports for the first time the performance of silver phosphate (Ag3PO4) microcrystals as photocatalyst (degradation of Rodamine B-RhB) and antifungal agent (against Candida albicansC. albicans) under visible-light irradiation (455 nm). Ag3PO4 microcrystals were synthesized by a simple co-precipitation (CP) method at room temperature. The structural and electronic properties of the as-synthetized Ag3PO4 have been investigated before and after 4 cycles of RhB degradation under visible light using X-ray diffraction (XRD), micro-Raman spectroscopy, UV–Vis spectrophotometer and field emission scanning electron microscopy (FE-SEM) images. The antifungal activity was analyzed in planktonic cells and 48h-biofilm of C. albicans by colony forming units (CFU) counting, confocal laser and FE-SE microscopies. Statistical analysis was carried out using SPSS software. Morphological and structural modifications of Ag3PO4 were observed upon recycling. After 4 recycles, the material maintained its photodegradation property; an eightfold increase in the efficiency of Ag3PO4 was observed in planktonic cells and a two fold increase in biofilm when irradiated under visible light. Thus, higher antifungal effectiveness against C. albicans was obtained when associated with visible-light irradiation.  相似文献   
3.
4.
5.
6.
The present study focuses on the sintering of silicon carbide-based ceramics (SiC) by liquid phase sintering (LPS) followed by characterization of the produced ceramics. AlN/Re2O3 mixtures were used as additives in the LPS process. In the first step, the LPS-SiC materials were produced in a graphite resistance furnace in the form of discs at different temperatures. The conditions with the best results regarding real density and relative density were taken as reference for sintering in the form of prismatic bars. In the second step, these samples were evaluated regarding fracture toughness (KIC), by the Single Edge V Notch Beam – SEVNB – method, and flexural strength. KIC behavior was evaluated according to the depth and curvature radius of the notches. Reliable KIC values were presented when the ceramic displayed a small curvature radius at the notch tip. When the radius was large, it did not maintain the square root singularity of the notch tip. Tests were carried out to determine KIC values in atmospheric air and water. KIC results were lower in water than air, with a decrease ranging between 2.56% and 11.26%. The observations indicated a direct grain size correlation between KIC values and fracture strength of the SiC ceramics.  相似文献   
7.
Tannase is an enzyme used in various industries and produced by a large number of microorganisms. The aim of this study was to evaluate tannase production to determine the biochemical, kinetic, and thermodynamic properties and to simulate tannase in vitro digestion. The tannase-producing fungal strain was isolated from “jamun” leaves and identified as Aspergillus tamarii. Temperature at 26°C for 67?h was the best combination for maximum tannase activity (6.35-fold; initial activity in Plackett–Burman design—15.53?U/mL and average final activity in Doehlert design—98.68?U/mL). The crude extract of tannase was optimally active at 40°C, pH 5.5 and 6.5. Moreover, tannase was stimulated by Na+, Ca2+, Mg2+, and Mn2+. The half-life at 40°C lasted 247.55?min. The free energy of Gibbs, enthalpy, and entropy, at 40°C, was 81.47, 16.85, and ?0.21?kJ/mol?·?K, respectively. After total digestion, 123.95% of the original activity was retained. Results suggested that tannase from A. tamarii URM 7115 is an enzyme of interest for industrial applications, such as gallic acid production, additive for feed industry, and for beverage manufacturing, due to its catalytic and thermodynamic properties.  相似文献   
8.
In this work it is presented a study on the residence time distribution (RTD) of particles in a co-current pilot-plant spray dryer operated with a rotary atomization system. A nuclear technique is applied to investigate the RTD responses of spray dryers. The methodology is based on the injection of a radioisotope tracer in the feed stream followed by the monitoring of its concentration at the outlet stream. The experiments were performed during the drying of aqueous suspensions of gadolinium oxide. The RTD responses obtained experimentally presented good reproducibility, indicating that the technique applied is well suited to investigating fluid-dynamics of spray dryers. In addition to the experimental investigation, a mathematical model was used to describe the RTD experimental curves.  相似文献   
9.
Reactive zirconia powder was synthesized by the complexation of zirconium metal from zirconium hydroxide using a solution of 8-hydroxiquinoline. The kinetics of zirconia crystallization was followed by X-ray diffraction, scanning electron microscopy and surface area measured by the nitrogen adsorption/desorption technique. The results indicated that zirconia with a surface area as high as 100 m2/g can be obtained by this method after calcination at 500°C. Zirconia presents three polymorphic phases (monoclinic, tetragonal and cubic), which are reversibly interconversible. The cluster model Zr4O8 and Zr4O7 +2 was used for a theoretical study of the stabilization process. The ab initio RHF method was employed with the Gaussian94 program and the total energies and the energy gap of the different phases were calculated and compared with the experimental energy gap. The theoretical results show good reproducibility of the energy gap for zirconia.  相似文献   
10.
The wetting of Ti–Cu alloys on Si3N4 was analyzed by the sessile drop method, using an imaging system with a CCD camera during the heating under argon flow. The contact angle was measured as a function of temperature and time. The samples were cut transversally and characterized by scanning electron microscopy and energy dispersive spectrometry (SEM/EDS). Wettability of the Ti–Cu alloy on Si3N4 is influenced by the reaction between the Ti and the ceramic. The TC1 and TC2 alloys presented low final contact angle values around 2° and 26°, respectively, indicating good wetting on Si3N4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号