首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学工业   1篇
一般工业技术   2篇
  2018年   1篇
  2016年   1篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
This study focused on the synthesis of aluminium nitride (AlN) by combusting aluminium nanopowder in air. To investigate the combustion of aluminium nanopowder, a copper bromide laser monitor was used. The optical system equipped with brightness amplification allowed the elimination of the background lighting effect and enabled the high time-resolved recording of the process. In particular, the laser monitor enabled us to detect changes in the morphology and optical properties of the surface of the aluminium nanopowder sample as well as to observe the propagation of the combustion waves in spite of the intense background lighting during combustion. The main time parameters of the combustion of aluminium nanopowder in air were determined. To improve and facilitate the processing of laser monitored high-speed video recordings, we proposed to analyse the time dependence of the intensity of the output signal of the laser monitor. The dependence was used to successfully detect the occurrences of all combustion waves and describe their dynamics. The time dependence also favourably represented the evolution of the reflection coefficient of the combustion products of aluminium nanopowder. This is the first time that this property of aluminium nanopowder has been investigated. The reflection coefficient evolution coupled with video recordings of the sample surface development during the combustion of nanopowder could be used to control the combustion process.  相似文献   
2.
The influence of microwave radiation with a power flux density of 80 W/cm2 and carrier frequency of 9.4 GHz on the thermal stability of aluminum nanopowder after irradiation in air is studied. It is established that, after irradiation, the chemical activity of aluminum nanopowder increases, the temperature for the beginning of its oxidation decreases by 40°, while the thermal effect of oxidation decreases by 13.5%.  相似文献   
3.
The process of aluminum nanopowder combustion in air under thermal explosion conditions has been studied. It is established that the presence of a constant magnetic field with an induction of 0.4 T favors the formation of aluminum nitride single crystals under non-steady-state combustion conditions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号