首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   4篇
化学工业   12篇
金属工艺   3篇
机械仪表   1篇
能源动力   1篇
轻工业   6篇
石油天然气   1篇
一般工业技术   13篇
冶金工业   1篇
自动化技术   5篇
  2022年   2篇
  2020年   2篇
  2019年   5篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2012年   6篇
  2011年   2篇
  2010年   1篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   3篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1991年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
Continuously reducing transistor sizes and aggressive low power operating modes employed by modern architectures tend to increase transient error rates. Concurrently, multicore machines are dominating the architectural spectrum today in various application domains. These two trends require a fresh look at resiliency of multithreaded applications against transient errors from a software perspective. In this paper, we propose and evaluate a new metric called the Thread Vulnerability Factor (TVFTVF). A distinguishing characteristic of TVFTVF is that its calculation for a given thread (which is typically one of the threads of a multithreaded application) does not depend on its code alone, but also on the codes of the threads that share resources and data with that thread. As a result, we decompose TVFTVF of a thread into two complementary parts: local and remote. While the former captures the TVFTVF induced by the code of the target thread, the latter represents the vulnerability impact of the threads that interact with the target thread. We quantify the local and remote TVFTVF values for three architectural components (register file, ALUs, and caches) using a set of ten multithreaded applications from the Parsec and Splash-2 benchmark suites. Our experimental evaluation shows that TVFTVF values tend to increase as the number of cores increases, which means the system becomes more vulnerable as the core count rises. We further discuss how TVFTVF metric can be employed to explore performance–reliability tradeoffs in multicores. Reliability-based analysis of compiler optimizations and redundancy-based fault tolerance are also mentioned as potential usages of our TVFTVF metric.  相似文献   
2.
We design and investigate the performance of fuzzy logic-controlled (FLC) active suspensions on a nonlinear vehicle model with four degrees of freedom, without causing any degeneration in suspension working limits. Force actuators were mounted parallel to the suspensions. In this new approach, linear combinations of the vertical velocities of the suspension ends and accelerations of the points of connection of the suspension to the body have been used as input variables. The study clearly demonstrates the effectiveness of the fuzzy logic controller for active suspension systems. Suspension working space degeneration is the most important problem in various applications. Decreasing the amplitudes of vehicle body vibrations improves ride comfort. Body bounce and pitch motion of the vehicle are presented both in time domain when travelling over a ramp-step road profile and in frequency domain. The results are compared with those of uncontrolled systems. At the end of this study, the performance and the advantage of the suggested approach and the improvement in ride comfort are discussed.  相似文献   
3.
Composite samples consisting of ferromagnetic asymmetric particles incorporated into a polyolefin binder were injection molded using custom designed molds which produced preferential fiber orientations. The relative magnetic permeability values of the composites were measured as a function of the filler volume fraction, injection rate, gate diameter, temperature, aspect ratio of the fibers, and fiber orientation. Fiber orientation was affected by the molding conditions and controlled the relative magnetic permeability of the composites. The degree of fiber orientation was significantly affected by the size of the opening (gate) to the mold, or by the mold geometry going from an edge-gated cylindrical to a center-gated disk cavity. Relative permeability values of the composites were observed to increase when the fiber orientation and the applied field were parallel to one another. For instance, highly aligned composite samples exhibited up to 30% greater relative permeability values compared to those samples which exhibit fiber orientation distributions approaching a random distribution. To our knowledge this is the first study that provides data linking the fiber orientation distribution functions of ferromagnetic asymmetric particles to the relative magnetic permeability values of injection molded composites.  相似文献   
4.
Transcatheter embolization is a minimally invasive procedure that uses embolic agents to intentionally block diseased or injured blood vessels for therapeutic purposes. Embolic agents in clinical practice are limited by recanalization, risk of non-target embolization, failure in coagulopathic patients, high cost, and toxicity. Here, a decellularized cardiac extracellular matrix (ECM)-based nanocomposite hydrogel is developed to provide superior mechanical stability, catheter injectability, retrievability, antibacterial properties, and biological activity to prevent recanalization. The embolic efficacy of the shear-thinning ECM-based hydrogel is shown in a porcine survival model of embolization in the iliac artery and the renal artery. The ECM-based hydrogel promotes arterial vessel wall remodeling and a fibroinflammatory response while undergoing significant biodegradation such that only 25% of the embolic material remains at 14 days. With its unprecedented proregenerative, antibacterial properties coupled with favorable mechanical properties, and its superior performance in anticoagulated blood, the ECM-based hydrogel has the potential to be a next-generation biofunctional embolic agent that can successfully treat a wide range of vascular diseases.  相似文献   
5.
Sergei Shenogin  Rahmi Ozisik 《Polymer》2005,46(12):4397-4404
Understanding the mechanism of deformation is very important in various applications. Although the stress-strain behavior of crystals and glasses are similar, the mechanism of deformation is very different. We used molecular dynamics to study polycarbonate and polystyrene under constant external loads. The results indicate that high atomic/segmental mobility and low local density enable the formation (nucleation) of highly deformed regions that grow to form plastic defects, and the effect of chemical structure was found to dominate the deformation mechanism  相似文献   
6.
This short communication reports on a radar approach for structural health monitoring of wind turbine blades. Therefore, a bistatic frequency‐modulated continuous wave (FMCW) radar in the frequency range from 33.4 to 36.0 GHz has been developed and tested experimentally using a laboratory wind turbine demonstrator. A differential damage localization framework is presented here that exploits signal differences between measurements from the intact and the damaged structure for 3D imaging of the defect. We have achieved the localization of a 30‐mm cut in a glass fiber composite structure as well as the localization of a water pack at the backside of the specimen with a localization error of several centimeters.  相似文献   
7.
Abstract

This study involves the characterization and dissolution of a thermoplastic elastomer copolymer used as binder in the new generation of energetic materials. The thermoplastic binder is an oxetane based elastomer manufactured by Thiokol Corporation. Since the binder encapsulates other components in an energetic material formulation, its controlled dissolution is crucial to the recovery and recycle of all the energetic material ingredients. The polymeric binder was found to be highly soluble in ethyl acetate and THF. The dissolution rate data obtained under well defined flow dynamics was satisfactorily correlated with the film model. External mass transfer resistance was found to be generally important but became negligible for Reynolds numbers above 6.0×104. The mass transfer coefficients calculated on the basis of the film model were found to be an Arrhenius function of temperature. The activation energy for the dissolution rates was estimated to be 4.8 kcal/mol.  相似文献   
8.
Vascular embolization is a life-saving minimally invasive catheter-based procedure performed to treat bleeding vessels. Through these catheters, numerous metallic coils are often pushed into the bleeding artery to stop the blood flow. While there are numerous drawbacks to coil embolization, physician expertise, availability of these coils, and their costs further limit their use. Here, a novel blood-derived embolic material (BEM) with regenerative properties, that can achieve instant and durable intra-arterial hemostasis regardless of coagulopathy, is developed. In a large animal model of vascular embolization, it is shown that the BEM can be prepared at the point-of-care within 26 min using fresh blood, it can be easily delivered using clinical catheters to embolize renal and iliac arteries, and it can achieve rapid hemostasis in acutely injured vessels. In swine arteries, the BEM increases cellular proliferation, angiogenesis, and connective tissue deposition, suggesting vessel healing and durable vessel occlusion. The BEM has significant advantages over embolic materials used today, making it a promising new tool for embolization.  相似文献   
9.
This paper discusses the extrudate swell behavior of glass-filled polyamide 6. The key features of the experiments were the facility to extrude directly into a density matched oil kept at extrusion temperature and thus, the ability to measure the diameter of the extrudate of the glass-filled polyamide immediately upon exit from the die, without the extrudate contacting air and as a function of time in a chamber under isothermal and neutrally-buoyant conditions. The concentration and orientation of the fibers of the extrudates were also studied using X-ray radiography in a post-mortem fashion. A skin/core morphology, where uniaxially aligned fibers constitute the skin zone and the core contains a reduced concentration of fibers, was observed.  相似文献   
10.
Various methods were evaluated in the production of ‘Hicaz’ pomegranate wine by microvinification. The chemical, phenolic and antioxidant characteristics of the wines were assessed by measurement of water‐soluble dry matter, acidity, density, alcohol content, volatile acidity, total monomeric anthocyanins, polarized colour intensity and individual phenolic compounds. Three different methods – classical maceration (N), seed‐supplemented maceration (S) and seed + enzyme supplemented maceration (E) – were applied. Total phenolic compounds of pomegranate must and wines (after 18 months of storage) were 1897 mg/L (must), 1663 mg/L (N), 1339 mg/L (E) and 1414 mg/L (S). Phenolic compounds in pomegranate must and wines included gallic acid, vanillic acid, caffeic acid, ferulic acid, p‐coumaric acid, hydroxycinnamic acid, epicatechin and catechin. Total antioxidant capacities (Trolox equivalents) of pomegranate must and wines (N, E and S) were 9.9 mm /L (must), 9.8 mm /L (N), 9.7 mm /L (E) and 9.5 mm /L (S). Copyright © 2017 The Institute of Brewing & Distilling  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号